Quantum Theory of the Electron Liquid

Quantum Theory of the Electron Liquid

Author: Gabriele Giuliani

Publisher: Cambridge University Press

Published: 2008-06-19

Total Pages: 779

ISBN-13: 1139471589

DOWNLOAD EBOOK

Modern electronic devices and novel materials often derive their extraordinary properties from the intriguing, complex behavior of large numbers of electrons forming what is known as an electron liquid. This book provides an in-depth introduction to the physics of the interacting electron liquid in a broad variety of systems, including metals, semiconductors, artificial nano-structures, atoms and molecules. One, two and three dimensional systems are treated separately and in parallel. Different phases of the electron liquid, from the Landau Fermi liquid to the Wigner crystal, from the Luttinger liquid to the quantum Hall liquid are extensively discussed. Both static and time-dependent density functional theory are presented in detail. Although the emphasis is on the development of the basic physical ideas and on a critical discussion of the most useful approximations, the formal derivation of the results is highly detailed and based on the simplest, most direct methods.


Introduction to the Electron Theory of Metals

Introduction to the Electron Theory of Metals

Author: Uichiro Mizutani

Publisher: Cambridge University Press

Published: 2001-06-14

Total Pages: 610

ISBN-13: 9780521587099

DOWNLOAD EBOOK

Electron theory of metals textbook for advanced undergraduate students of condensed-matter physics and related disciplines.


Theory of Electron—Atom Collisions

Theory of Electron—Atom Collisions

Author: Philip G. Burke

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 264

ISBN-13: 1489915672

DOWNLOAD EBOOK

The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.