Electromagnetic Analysis Using Transmission Line Variables (Third Edition)

Electromagnetic Analysis Using Transmission Line Variables (Third Edition)

Author: Maurice Weiner

Publisher: World Scientific

Published: 2017-12-27

Total Pages: 653

ISBN-13: 981322505X

DOWNLOAD EBOOK

This latest edition continues the evolution toward the ultimate realization of a new technique for solving electromagnetic propagation problems. The technique combines the classical and intuitive use of a transmission line matrix (TLM) while striving for consistency with the guideposts demanded by quantum mechanics and the essential structure of electromagnetic theory. The matrix then becomes a useful vehicle for examining both coherent and noncoherent electromagnetic waves. The goal is a mathematical tool capable of solving problems related to the propagation of transient, high-speed, complex waveforms containing both symmetric and plane wave components. For such waveforms, standard classical electromagnetic theory is unable to provide a truly accurate solution since it does not properly account for the correlations among the various TLM cells. The correlations among neighboring TLM cells allow the cell waves to sense one another and to collectively participate as a coherent wave.For arbitrary signals, e.g., complex, high speed, highly non-uniform signals, the correlation model must be placed on a firmer footing to insure the proper correlation strength based on the close adherence to quantum mechanical principles. The purpose of the Third Edition is to thereby improve the correlation model, and incorporate the model into the simulations. The simulation results thus obtained show great promise in describing the full range of electromagnetic phenomena. Wave divergence and diffraction simulations, employing both composite and shorter range correlation models, have been incorporated. The models employ correlation coefficients which may be linked with quantum mechanical parameters, thus providing a deeper understanding of coherent wave fronts.


Electromagnetic Analysis Using Transmission Line Variables (2nd Edition)

Electromagnetic Analysis Using Transmission Line Variables (2nd Edition)

Author: Maurice Weiner

Publisher: World Scientific

Published: 2010-08-31

Total Pages: 515

ISBN-13: 9814466727

DOWNLOAD EBOOK

This book employs a relatively new method for solving electromagnetic problems, one which makes use of a transmission line matrix (TLM). The propagation space is imagined to be filled with this matrix. The propagating fields and physical properties are then mapped onto the matrix. Mathematically, the procedures are identical with the traditional numerical methods; however, the interpretation and physical appeal of the transmission line matrix are far superior. Any change in the matrix has an immediate physical significance. What is also very important is that the matrix becomes a launching pad for many improvements in the analysis, using more modern notions of electromagnetic waves. Eventually, the purely mathematical techniques will probably give way to the transmission line matrix method.Major revisions occur in chapters IV and VII in this second edition. The revised chapters now present an up-to-date and concise treatment on plane wave correlations and decorrelations, and provide a revised formulation of simulation to solve transient electromagnetic problems. It also takes into account semiconductors with arbitrary dielectric constant, using much smaller cell size, and extending the range of applicability and improving accuracy.


Electromagnetic Analysis Using Transmission Line Variables

Electromagnetic Analysis Using Transmission Line Variables

Author: Maurice Weiner

Publisher: World Scientific

Published: 2010

Total Pages: 515

ISBN-13: 9814287482

DOWNLOAD EBOOK

Summary: Describes transmission line matrix techniques for solving electromagnetic problems. The approach visualizes the propagation medium as divided into identical cells with the electromagnetic energy confined to transmission lines which separate the cells. The author, who works for United Silicon Carbide, develops the electromagnetic scattering equations for one, two and three dimensions, corrects the transmission line matrix for any wave properties, and incorporates boundary conditions and dispersion into the method. Finally, he outlines a computer program for finding the transient solution of a 2D semiconductor switch whose conductivity is induced by a light source.


Electromagnetic Compatibility

Electromagnetic Compatibility

Author: David A. Weston

Publisher: CRC Press

Published: 2016-11-03

Total Pages: 1182

ISBN-13: 1482299518

DOWNLOAD EBOOK

Offers a text useful for practicing nonspecialist engineers and those new to EMC Contains worked examples and applications of all equations Provides computer code and contains programs available for readers Covers certification EMC measurement techniques Includes a full chapter on system level EMC/EMI


Transmission Lines

Transmission Lines

Author: Richard Collier

Publisher: Cambridge University Press

Published: 2013-03-14

Total Pages: 333

ISBN-13: 110731111X

DOWNLOAD EBOOK

This rigorous treatment of transmission lines presents all the essential concepts in a clear and straightforward manner. Key principles are demonstrated by numerous practical worked examples and illustrations, and complex mathematics is avoided throughout. Early chapters cover pulse propagation, sinusoidal waves and coupled lines, all set within the context of a simple lossless equivalent circuit. Later chapters then develop this basic model by demonstrating the derivation of circuit parameters, and the use of Maxwell's equations to extend this theory to major transmission lines. Finally, a discussion of photonic concepts and properties provides valuable insights into the fundamental physics underpinning transmission lines. Covering DC to optical frequencies, this accessible text is an invaluable resource for students, researchers and professionals in electrical, RF and microwave engineering.


Electromagnetic Analysis Using Transmission Line Variables

Electromagnetic Analysis Using Transmission Line Variables

Author: Maurice Weiner

Publisher: World Scientific Publishing Company

Published: 2017-12-27

Total Pages: 654

ISBN-13: 9789813225022

DOWNLOAD EBOOK

This latest edition continues the evolution toward the ultimate realization of a new technique for solving electromagnetic propagation problems. The technique combines the classical and intuitive use of a transmission line matrix (TLM) while striving for consistency with the guideposts demanded by quantum mechanics and the essential structure of electromagnetic theory. The matrix then becomes a useful vehicle for examining both coherent and noncoherent electromagnetic waves. The goal is a mathematical tool capable of solving problems related to the propagation of transient, high-speed, complex waveforms containing both symmetric and plane wave components. For such waveforms, standard classical electromagnetic theory is unable to provide a truly accurate solution since it does not properly account for the correlations among the various TLM cells. The correlations among neighboring TLM cells allow the cell waves to sense one another and to collectively participate as a coherent wave. For arbitrary signals, e.g., complex, high speed, highly non-uniform signals, the correlation model must be placed on a firmer footing to insure the proper correlation strength based on the close adherence to quantum mechanical principles. The purpose of the Third Edition is to thereby improve the correlation model, and incorporate the model into the simulations. The simulation results thus obtained show great promise in describing the full range of electromagnetic phenomena. Wave divergence and diffraction simulations, employing both composite and shorter range correlation models, have been incorporated. The models employ correlation coefficients which may be linked with quantum mechanical parameters, thus providing a deeper understanding of coherent wave fronts.


Handbook of Biological Effects of Electromagnetic Fields, Third Edition - 2 Volume Set

Handbook of Biological Effects of Electromagnetic Fields, Third Edition - 2 Volume Set

Author: Charles Polk

Publisher: CRC Press

Published: 1995-12-21

Total Pages: 636

ISBN-13: 9780849306419

DOWNLOAD EBOOK

The first edition of this book has been recognized as the standard reference on biological effects of electric and magnetic fields from DC to microwaves. But much has changed in this science since the book's original publication in 1986. With contributions from eighteen leading researchers, this latest edition includes authoritative discussions of many new developments and will quickly become the new, must-have resource handbook. Dielectric properties of biological tissue are thoroughly examined, followed by chapters on physical mechanisms and biological effects of static and extremely low frequency magnetic fields. New chapters on topics that were treated very briefly in the first edition now receive extensive treatment. These topics include electric and magnetic fields for bone and soft tissue repair, electroporation, and epidemiology of ELF health effects. The chapter on computer methods for predicting field intensity has been substantially revised to describe new numerical techniques developed within the last few years and includes calculations of power absorbed in the human head from cellular telephones. The chapter discussing experimental results on RF interaction with living matter now contains information on effects of very high power, very short duration pulses. A new appendix on safety standards is based on the latest publications of governmental, as well as quasi-governmental organizations (such as the U.S. Council on Radiation Protection) in the United States, Europe, and Australia. With all its revisions, this updated version of the CRC Handbook of Biological Effects of Electromagnetic Fields provides the most comprehensive overview available of this rapidly changing science.


Numerical Techniques in Electromagnetics with MATLAB

Numerical Techniques in Electromagnetics with MATLAB

Author: Matthew N.O. Sadiku

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 601

ISBN-13: 1420063103

DOWNLOAD EBOOK

Despite the dramatic growth in the availability of powerful computer resources, the EM community lacks a comprehensive text on the computational techniques used to solve EM problems. The first edition of Numerical Techniques in Electromagnetics filled that gap and became the reference of choice for thousands of engineers, researchers, and students. This third edition of the bestselling text reflects the continuing increase in awareness and use of numerical techniques and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. The author also has added a chapter on the method of lines. Numerical Techniques in Electromagnetics with MATLAB®, Third Edition continues to teach readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Now the Third Edition goes even further toward providing a comprehensive resource that addresses all of the most useful computation methods for EM problems and includes MATLAB code instead of FORTRAN.


Building Electro-Optical Systems

Building Electro-Optical Systems

Author: Philip C. D. Hobbs

Publisher: John Wiley & Sons

Published: 2022-01-05

Total Pages: 834

ISBN-13: 111943906X

DOWNLOAD EBOOK

Building Electro-Optical Systems In the newly revised third edition of Building Electro-Optical Systems: Making It All Work, renowned Dr. Philip C. D. Hobbs delivers a birds-eye view of all the topics you’ll need to understand for successful optical instrument design and construction. The author draws on his own work as an applied physicist and consultant with over a decade of experience in designing and constructing electro-optical systems from beginning to end. The book’s topics are chosen to allow readers in a variety of disciplines and fields to quickly and confidently decide whether a given device or technique is appropriate for their needs. Using accessible prose and intuitive organization, Building Electro-Optical Systems remains one of the most practical and solution-oriented resources available to graduate students and professionals. The newest edition includes comprehensive revisions that reflect progress in the field of electro-optical instrument design and construction since the second edition was published. It also offers approximately 350 illustrations for visually oriented learners. Readers will also enjoy: A thorough introduction to basic optical calculations, including wave propagation, detection, coherent detection, and interferometers Practical discussions of sources and illuminators, including radiometry, continuum sources, incoherent line sources, lasers, laser noise, and diode laser coherence control Explorations of optical detection, including photodetection in semiconductors and signal-to-noise ratios Full treatments of lenses, prisms, and mirrors, as well as coatings, filters, and surface finishes, and polarization Perfect for graduate students in physics, electrical engineering, optics, and optical engineering, Building Electro-Optical Systems is also an ideal resource for professional designers working in optics, electro-optics, analog electronics, and photonics.