Contents: Oxygen The Essential Environmental Component As A Classical Electrochemical Element, Ion Voltammetry at the Interface Between Two Immiscible Electrolyte Solutions, Principles of Interfacial Measurements and Absorption Voltammetry with Mercury Electrodes, Adsorptive Stripping Voltammetry, Electrochemical Detection for High-Performance Separation Techniques and Flow Analysis, Electrochemical Gas Sensors, Electrochemistry of Environmentally Important Organic Substances, Electroanalysis in Environmental Control, Electrochemistry of Biologically Active Substances in Non-Aqueous Medium, Chemical and Electrochemical Transformations of 1, 2, 4 Trianine Herbicides.
Wastewater treatment technology is undergoing a profound transformation due to the fundamental changes in regulations governing the discharge and disposal of h- ardous pollutants. Established design procedures and criteria, which have served the industry well for decades, can no longer meet the ever-increasing demand. Toxicity reduction requirements dictate in the development of new technologies for the treatment of these toxic pollutants in a safe and cost-effective manner. Fo- most among these technologies are electrochemical processes. While electrochemical technologies have been known and utilized for the tre- ment of wastewater containing heavy metal cations, the application of these p- cesses is only just a beginning to be developed for the oxidation of recalcitrant organic pollutants. In fact, only recently the electrochemical oxidation process has been rec- nized as an advanced oxidation process (AOP). This is due to the development of boron-doped diamond (BDD) anodes on which the oxidation of organic pollutants is mediated via the formation of active hydroxyl radicals.
The first book of its kind, Environmental Electrochemistry considers the role that electrochemical science and engineering can play in environmental remediation, pollution targeting, and pollutant recycling. Electrochemical-based sensors and abatement technologies for the detection, quantification, and treatment of environmental pollutants are described. Each chapter includes an extensive listing of supplemental readings, with illustrations throughout the bookto clarify principles and approaches detailed in the text. Key Features * The first book to review electro- and photoelectrochemical technologies for environmental remediation, pollution sensors and pollutant recycling * Applicable to a broad audience of environmental scientists and practicing electrochemists * Includes both laboratory concepts and practical applications
Electrochemical Water Treatment Methods provides the fundamentals and applications of electrochemical water treatment methods to treat industrial effluents. Sections provide an overview of the technology, its current state of development, and how it is making its way into industry applications. Other sections deal with historical developments and the fundamentals of 18 methods, including coupled methods, such as Electrocoagulation, Peroxi-Coagulation and Electro-Fenton treatments. In addition, users will find discussions that relate to industries such as Pulp and Paper, Pharmaceuticals, Textiles, and Urban/Domestic wastewater, amongst others. Final sections present advantages, disadvantages and ways to combine renewable energy sources and electrochemical methods to design sustainable facilities. Environmental and Chemical Engineers will benefit from the extensive collection of methods and industry focused application cases, but researchers in environmental chemistry will also find interesting examples on how methods can be transitioned from lab environments to practical applications. - Offers an excellent overview of the research advances and current applications of electrochemical technologies for water treatment - Explains, in a comprehensive way, the fundamentals of different electrochemical uses and applications of different technologies - Provides a large number of examples as evidence of practical applications of electrochemistry to environmental protection - Explores the combination possibilities with other treatment technologies or emerging technologies for destroying water pollutants
This book concentrates on the electrochemistry/environment relationship including, among others, chapters on design and operation of electrochemical reactors and separators, process simulation, development and scale-up, optimization and control of electrochemical processes applied to environmental problems, also including economic analysis, description of unique current and future applications, in addition to basic research into developing new technologies. It is hoped that this volume will be considered interesting and extremely timely to specialists in electrochemistry and environmental sciences.
The book starts with the fundamentals of triboelectric nanogenerators (TENGs), and continues through to fabrication technologies to achieve flexible and stretchable. Then self-powered flexible microsystems are introduced and application examples are presented, including TENG-based active sensors, TENG-powered actuators, artificial intelligence and integrated systems.
Electrochemical Biosensors summarizes fundamentals and trends in electrochemical biosensing. It introduces readers to the principles of transducing biological information to measurable electrical signals to identify and quantify organic and inorganic substances in samples. The complexity of devices related to biological matrices makes this challenging, but this measurement and analysis are critically valuable in biotechnology and medicine. Electrochemical biosensors combine the sensitivity of electroanalytical methods with the inherent bioselectivity of the biological component. Some of these sensor devices have reached the commercial stage and are routinely used in clinical, environmental, industrial and agricultural applications. - Describes several electrochemical methods used as detection techniques with biosensors - Discusses different modifiers, including nanomaterials, for preparing suitable pathways for immobilizing biomaterials at the sensor - Explains various types of signal monitoring, along with several recognition systems, including antibodies/antigens, DNA-based biosensors, aptamers (protein-based), and more
While electrochemistry deals with the interrelation of electrical and chemical phenomena, applied electrochemistry is the interface between fundamental science and practical applications. It is vitally important for our industrial society of today and even more so for its future. A successful response to global challenges such as securing energy supply, developing energy-efficient and sustainable processes and materials, environmentally friendly technologies, or monitoring physiological processes for health care requires electrochemical research and engineering. The Encyclopedia of Applied Electrochemistry provides an authoritative compilation of entries dealing with all applied aspects of electrochemistry, including basic theoretical concepts, and instrumentation. As a unique, one-stop resource for sound and digested knowledge in this field, the Encyclopedia of Applied Electrochemistry comprises the first applications-oriented interdisciplinary work on the critical technologies underlying key advances such as energy efficiency (e.g. batteries for electric cars, etc.), green and sustainable chemical industries, new materials (corrosion resistant and low-friction), and biomedical sensors.