Electrochemical Reactors: Fundamentals, electrolysers, batteries, and fuel cells

Electrochemical Reactors: Fundamentals, electrolysers, batteries, and fuel cells

Author: M. I. Ismail

Publisher: Elsevier Publishing Company

Published: 1989

Total Pages: 582

ISBN-13:

DOWNLOAD EBOOK

This book provides a guide for professionals interested in energy transfer and electrochemical technology systems. It covers the state-of-the-art of materials, electrochemistry and electrochemical engineering as related to electrochemical reactors, batteries and fuel cells. The fifteen chapters, written by experts in fields related to every aspect affecting reactor performance, are grouped into three parts. The first is devoted to fundamentals of reactors, batteries and fuel cells and covers various aspects of design, parts, construction, materials operation and control systems. The second group is devoted to specific reactors such as aqueous electro-organic and inorganic synthesis, electrochemical polymerization, molten salt electrolysis, electrochemical machining, metal finishing, reactor performance, failure mechanisms, corrosion control, materials selection and techniques. The third group deals with manufacturing techniques and surface treatment of materials for commercial reactors, commercial parts/materials, fastening, assembly and production of reactor parts and mathematical modelling of various reactor processes.


Electrochemical Power Sources: Fundamentals, Systems, and Applications

Electrochemical Power Sources: Fundamentals, Systems, and Applications

Author: Tom Smolinka

Publisher: Elsevier

Published: 2021-10-25

Total Pages: 512

ISBN-13: 0128194251

DOWNLOAD EBOOK

Electrochemical Power Sources: Fundamentals, Systems, and Applications: Hydrogen Production by Water Electrolysis offers a comprehensive overview about different hydrogen production technologies, including their technical features, development stage, recent advances, and technical and economic issues of system integration. Allied processes such as regenerative fuel cells and sea water electrolysis are also covered. For many years hydrogen production by water electrolysis was of minor importance, but research and development in the field has increased significantly in recent years, and a comprehensive overview is missing. This book bridges this gap and provides a general reference to the topic. Hydrogen production by water electrolysis is the main technology to integrate high shares of electricity from renewable energy sources and balance out the supply and demand match in the energy system. Different electrochemical approaches exist to produce hydrogen from RES (Renewable Energy Sources). Covers the fundamentals of hydrogen production by water electrolysis Reviews all relevant technologies comprehensively Outlines important technical and economic issues of system integration Includes commercial examples and demonstrates electrolyzer projects


Electrochemical Reactors: Fundamentals, electrolysers, batteries, and fuel cells

Electrochemical Reactors: Fundamentals, electrolysers, batteries, and fuel cells

Author: M. I. Ismail

Publisher: Elsevier Publishing Company

Published: 1989

Total Pages: 574

ISBN-13:

DOWNLOAD EBOOK

This book provides a guide for professionals interested in energy transfer and electrochemical technology systems. It covers the state-of-the-art of materials, electrochemistry and electrochemical engineering as related to electrochemical reactors, batteries and fuel cells. The fifteen chapters, written by experts in fields related to every aspect affecting reactor performance, are grouped into three parts. The first is devoted to fundamentals of reactors, batteries and fuel cells and covers various aspects of design, parts, construction, materials operation and control systems. The second group is devoted to specific reactors such as aqueous electro-organic and inorganic synthesis, electrochemical polymerization, molten salt electrolysis, electrochemical machining, metal finishing, reactor performance, failure mechanisms, corrosion control, materials selection and techniques. The third group deals with manufacturing techniques and surface treatment of materials for commercial reactors, commercial parts/materials, fastening, assembly and production of reactor parts and mathematical modelling of various reactor processes.


High-Temperature Electrochemical Energy Conversion and Storage

High-Temperature Electrochemical Energy Conversion and Storage

Author: Yixiang Shi

Publisher: CRC Press

Published: 2017-11-08

Total Pages: 228

ISBN-13: 1351332015

DOWNLOAD EBOOK

As global demands for energy and lower carbon emissions rise, developing systems of energy conversion and storage becomes necessary. This book explores how Electrochemical Energy Storage and Conversion (EESC) devices are promising advanced power systems that can directly convert chemical energy in fuel into power, and thereby aid in proposing a solution to the global energy crisis. The book focuses on high-temperature electrochemical devices that have a wide variety of existing and potential applications, including the creation of fuel cells for power generation, production of high-purity hydrogen by electrolysis, high-purity oxygen by membrane separation, and various high-temperature batteries. High-Temperature Electrochemical Energy Conversion and Storage: Fundamentals and Applications provides a comprehensive view of the new technologies in high-temperature electrochemistry. Written in a clear and detailed manner, it is suitable for developers, researchers, or students of any level.


Electrochemical Engineering

Electrochemical Engineering

Author: Thomas F. Fuller

Publisher: John Wiley & Sons

Published: 2018-03-20

Total Pages: 450

ISBN-13: 111900425X

DOWNLOAD EBOOK

A Comprehensive Reference for Electrochemical Engineering Theory and Application From chemical and electronics manufacturing, to hybrid vehicles, energy storage, and beyond, electrochemical engineering touches many industries—any many lives—every day. As energy conservation becomes of central importance, so too does the science that helps us reduce consumption, reduce waste, and lessen our impact on the planet. Electrochemical Engineering provides a reference for scientists and engineers working with electrochemical processes, and a rigorous, thorough text for graduate students and upper-division undergraduates. Merging theoretical concepts with widespread application, this book is designed to provide critical knowledge in a real-world context. Beginning with the fundamental principles underpinning the field, the discussion moves into industrial and manufacturing processes that blend central ideas to provide an advanced understanding while explaining observable results. Fully-worked illustrations simplify complex processes, and end-of chapter questions help reinforce essential knowledge. With in-depth coverage of both the practical and theoretical, this book is both a thorough introduction to and a useful reference for the field. Rigorous in depth, yet grounded in relevance, Electrochemical Engineering: Introduces basic principles from the standpoint of practical application Explores the kinetics of electrochemical reactions with discussion on thermodynamics, reaction fundamentals, and transport Covers battery and fuel cell characteristics, mechanisms, and system design Delves into the design and mechanics of hybrid and electric vehicles, including regenerative braking, start-stop hybrids, and fuel cell systems Examines electrodeposition, redox-flow batteries, electrolysis, regenerative fuel cells, semiconductors, and other applications of electrochemical engineering principles Overlapping chemical engineering, chemistry, material science, mechanical engineering, and electrical engineering, electrochemical engineering covers a diverse array of phenomena explained by some of the important scientific discoveries of our time. Electrochemical Engineering provides the critical understanding required to work effectively with these processes as they become increasingly central to global sustainability.


Electrochemical Water Electrolysis

Electrochemical Water Electrolysis

Author: Lei Zhang

Publisher: CRC Press

Published: 2020-04-08

Total Pages: 240

ISBN-13: 0429826044

DOWNLOAD EBOOK

This book comprehensively describes the fundamentals of electrochemical water electrolysis as well as the latest materials and technological developments. It addresses a variety of topics such as electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms, as well as challenges and strategies. It also includes an understanding of how materials and technologies for electrochemical water electrolysis have developed in recent years, and it describes the progress in improving performance and providing benefits to energy systems and applications. Features the most recent advances in electrochemical water electrolysis to produce hydrogen Discusses cutting-edge materials and technologies for electrochemical water electrolysis Includes both experimental and theoretical approaches that can be used to guide and promote materials as well as technological development for electrochemical water electrolysis Comprises work from international leading scientists active in electrochemical energy and environmental research and development Provides invaluable information that will benefit readers from both academia and industry With contributions from researchers at the top of their fields, the book includes in-depth discussions covering the engineering of components and applied devices, making this an essential read for scientists and engineers working in the development of electrochemical energy devices and related disciplines.


Electrochemical Components

Electrochemical Components

Author: Marie-Cécile Pera

Publisher: John Wiley & Sons

Published: 2013-08-02

Total Pages: 251

ISBN-13: 1118576926

DOWNLOAD EBOOK

This book focuses on the methods of storage commonly used in hybrid systems. After an introductory chapter reviewing the basics of electrochemistry, Chapter 2 is given over to the storage of electricity in the form of hydrogen. Once hydrogen has been made, we have to be able to convert it back into electricity on demand. This can be done with another energy converter: a fuel cell, the subject of Chapter 3. Such a system is unable to deliver significant dynamics in terms of storage and release of electricity and needs to be supplemented with another solution: a detailed study of supercapacitors is provided in Chapter 4.While the storage systems touched upon in the previous three chapters (hydrogen batteries and supercapacitors) both exhibit advantageous characteristics, at present they are still relatively costly. Thus, the days of the electrochemical accumulator by no means appear to be numbered just yet. This will therefore be the topic of Chapter 5. Finally, on the basis of the elements laid down in the previous chapters, Chapter 6 will focus on electrical hybridization of these storage systems, with a view to enhancing the performance (in terms of energy, lifetime, cost, etc.) of the newly formed system. Aimed at an audience of researchers, industrialists, academics, teachers and students, many exercises, along with corrected solutions, are provided throughout the book. Contents 1. Basic Concepts of Electrochemistry used in Electrical Engineering. 2. Water Electrolyzers. 3. Fuel Cells. 4. Electrical Energy Storage by Supercapacitors. 5. Electrochemical Accumulators. 6. Hybrid Electrical System. About the Authors Marie-Cécile Péra is a Full Professor at the University of Franche-Comte in France and Deputy Director of the FEMTO-ST Institute (CNRS). Her research activities include modeling, control and diagnosis of electric power generation systems (fuel cells – PEMFC and SOFC, supercapacities, batteries) for transportation and stationary applications. She has contributed to more than 180 articles in international journals and conferences. Daniel Hissel is Full Professor at the University of Franche-Comte in France and Director of the Fuel Cell Lab Research Federation (CNRS). He also leads a research team devoted to hybrid electrical systems in the FEMTO-ST Institute (CNRS). He has published more than 250 research papers on modeling, control, diagnostics and prognostics of hybrid electrical systems. Hamid Gualous is Full Professor at the University of Caen Lower Normandy in France and director of the LUSAC laboratory. His current research interests include power electronics, electric energy storage, power and energy systems and energy management. Christophe Turpin is Full Researcher at the CNRS (French National Center for Scientific Research). He is responsible for hydrogen activities within the Laboratory LAPLACE, Toulouse, France. His research activities include the characterization and modeling of fuel cells and electrolyzers, the state of health of these components, and their hybridization with other electrochemical components (ultracapacitors, batteries) within optimized energy systems for stationary and aeronautical applications.


Electrochemical Technologies for Energy Storage and Conversion

Electrochemical Technologies for Energy Storage and Conversion

Author: Jiujun Zhang

Publisher: John Wiley & Sons

Published: 2012-03-27

Total Pages: 842

ISBN-13: 352764007X

DOWNLOAD EBOOK

In this handbook and ready reference, editors and authors from academia and industry share their in-depth knowledge of known and novel materials, devices and technologies with the reader. The result is a comprehensive overview of electrochemical energy and conversion methods, including batteries, fuel cells, supercapacitors, hydrogen generation and storage as well as solar energy conversion. Each chapter addresses electrochemical processes, materials, components, degradation mechanisms, device assembly and manufacturing, while also discussing the challenges and perspectives for each energy storage device in question. In addition, two introductory chapters acquaint readers with the fundamentals of energy storage and conversion, and with the general engineering aspects of electrochemical devices. With its uniformly structured, self-contained chapters, this is ideal reading for entrants to the field as well as experienced researchers.


Fundamentals of Hydrogen Production and Utilization in Fuel Cell Systems

Fundamentals of Hydrogen Production and Utilization in Fuel Cell Systems

Author: Seyed Ehsan Hosseini

Publisher: Elsevier

Published: 2023-07-26

Total Pages: 378

ISBN-13: 0323884229

DOWNLOAD EBOOK

Fundamentals of Hydrogen Production and Utilization in Fuel Cell Systems provides a comprehensive overview of the complex and interdisciplinary issues surrounding the use of hydrogen fuel cells in the global transportation system. With a particular emphasis on the commercialization and implementation of hydrogen fuel cells, the book deals with production, utilization, storage and safety, and addresses the application of fuel cells in the road, rail, maritime and aviation sectors. For each sector, the book discusses the fundamentals of fuel cells, the current technical, environmental, safety, and economic performance, the main barriers to implementation and how to address themThis book is an invaluable reference for researchers, graduate students and industry engineers across the fuel cells and transportation sector, but is also ideal for policymakers involved in the energy transition. Offers the first account of hydrogen fuel cell systems that considers every sector: road, rail, maritime and aviation Focuses on the practical utilization and implementation of hydrogen fuel cells in transportation systems Summarizes the latest research and developments in hydrogen fuel cell powered transportation


Sustainable and Green Electrochemical Science and Technology

Sustainable and Green Electrochemical Science and Technology

Author: Keith Scott

Publisher: John Wiley & Sons

Published: 2017-05-16

Total Pages: 456

ISBN-13: 111869810X

DOWNLOAD EBOOK

Sustainable and Green Electrochemical Science and Technology brings together the basic concepts of electrochemical science and engineering and shows how these are applied in an industrial context, emphasising the major role that electrochemistry plays within society and industry in providing cleaner, greener and more sustainable technologies. Electrochemistry has many applications for sustainability; it can be used to store energy, synthesise materials and chemicals, to generate power and to recycle valuable resources. Coverage includes Electrochemistry, Electrocatalysis and Thermodynamics Electrochemical Cells, Materials and Reactors Carbon Dioxide Reduction and Electro-Organic Synthesis Hydrogen production and Water Electrolysis Inorganic Synthesis Electrochemical Energy Storage and Power Sources Electrochemical processes for recycling and resource recovery Fuel Cell Technologies This book is targeted at both industrial and academic readers, providing a good technological reference base for electrochemistry. It will enable the reader to build on basic principles of electrochemistry, and takes these through to cell design for various and diverse applications.