This book provides a comprehensive introduction into the fundamental physics and basic technical principles of automatic control and drive technology. It pays particular attention to the design and dimensioning of electrical feed drives in automation technology. It helps engineers and technicians to put into practice the theoretical fundamentals of automatic control and drive technology for machines in the tool, glass and ceramics industries as well as in the woodworking and packaging industries. It also deals with the application of robots and other manipulators. The relationships between automatic control and mechanical engineering are described and explained, making the book also particularly useful for students of technical disciplines.
Electric Drives and Electromechanical Devices: Applications and Control, Second Edition, presents a unified approach to the design and application of modern drive system. It explores problems involved in assembling complete, modern electric drive systems involving mechanical, electrical, and electronic elements. This book provides a global overview of design, specification applications, important design information, and methodologies.This new edition has been restructured to present a seamless, logical discussion on a wide range of topical problems relating to the design and specification of the complete motor-drive system. It is organised to establish immediate solutions to specific application problem. Subsidiary issues that have a considerable impact on the overall performance and reliability, including environmental protection and costs, energy efficiency, and cyber security, are also considered. - Presents a comprehensive consideration of electromechanical systems with insights into the complete drive system, including required sensors and mechanical components - Features in-depth discussion of control schemes, particularly focusing on practical operation - Includes extensive references to modern application domains and real-world case studies, such as electric vehicles - Considers the cyber aspects of drives, including networking and security
AC Motor Control and Electrical Vehicle Applications provides a guide to the control of AC motors with a focus on its application to electric vehicles (EV). It describes the rotating magnetic flux, based on which dynamic equations are derived. The text not only deals with the induction motor, but covers the permanent magnet synchronous motors (PMSM). Additionally, the control issues are discussed by taking into account the limitations of voltage and current. The latest edition includes more experimental data and expands upon the topics of inverter, pulse width modulation methods, loss minimizing control, and vehicle dynamics. Various EV motor design issues are also reviewed, while comparing typical types of PMSMs. Features Considers complete dynamic modeling of induction and PMSM in the rotating frame. Provides various field-oriented controls, while covering advanced topics in PMSM high speed control, loss minimizing control, and sensorless control. Covers inverter, sensors, vehicle dynamics, driving cycles, etc., not just motor control itself. Offers a comparison between BLDC, surface PMSM, and interior PMSM. Discusses how the motor produces torque and is controlled based on consistent mathematical treatments.
From the point of view of a user this book covers all aspects of modern electrical drives. It is aimed at both users, who wish to understand, design, use, and maintain electrical drives, as well as specialists, technicians, engineers, and students, who wish to gain a comprehensive overview of electrical drives. Jens Weidauer and Richard Messer describe the principles of electrical drives, their design, and application, through to complex automation solutions. In the process, they introduce the entire spectrum of drive solutions available and their main applications. A special aspect is the combination of multiple drives to form a drive system, as well as the integration of drives into automation solutions. In simple and clear language, and supported with many diagrams, complex relationships are described and presented in an easy-to-understand way. The authors deliberately avoid a comprehensive mathematical treatment of their subject and instead focus on a coherent description of the active principles and relationships. As a result, the reader will be in a position to understand electrical drives as a whole and to solve drive-related problems in everyday professional life.
Electrical drives play an important part as electromechanical energy converters in transportation, materials handling and most production processes. This book presents a unified treatment of complete electrical drive systems, including the mechanical parts, electrical machines, and power converters and control. Since it was first published in 1985 the book has found its way onto many desks in industry and universities all over the world. For the second edition the text has been thoroughly revised and updated, with the aim of offering the reader a general view of the field of controlled electrial drives, which are maintaining and extending their importance as the most flexible source of controlled mechanical energy.
Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors, synchronous and switched reluctance motors, stepping motors and piezoelectric motors. This book presents efficient controls to improve the use of these non-conventional motors. Contents 1. Self-controlled Synchronous Motor: Principles of Function and Simplified Control Model, Francis Labrique and François Baudart. 2. Self-controlled Synchronous Motor: Dynamic Model Including the Behavior of Damper Windings and Commutation Overlap, Ernest Matagne. 3. Synchronous Machines in Degraded Mode, Damien Flieller, Ngac Ky Nguyen, Hervé Schwab and Guy Sturtzer. 4. Control of the Double-star Synchronous Machine Supplied by PWM Inverters, Mohamed Fouad Benkhoris. 5. Vectorial Modeling and Control of Multiphase Machines with Non-salient Poles Supplied by an Inverter, Xavier Kestelyn and Éric Semail. 6. Hybrid Excitation Synchronous Machines, Nicolas Patin and Lionel Vido. 7. Advanced Control of the Linear Synchronous Motor, Ghislain Remy and Pierre-Jean Barre. 8. Variable Reluctance Machines: Modeling and Control, Mickael Hilairet, Thierry Lubin and Abdelmounaïm Tounzi. 9. Control of the Stepping Motor, Bruno Robert and Moez Feki . 10. Control of Piezoelectric Actuators, Frédéric Giraud and Betty Lemaire-Semail.
The HVDC Light[trademark] method of transmitting electric power. Introduces students to an important new way of carrying power to remote locations. Revised, reformatted Instructor's Manual. Provides instructors with a tool that is much easier to read. Clear, practical approach.
The first part of this third volume focuses on the design of mechatronic components, in particular the feed drives of machine tools used to generate highly dynamic drive movements. Engineering guides for the selection and design of important machine components, the control technology of feed drives, and the measuring systems required for position capture are presented. Another focus is on process and diagnostic equipment for manufacturing machines and systems. The second part describes control concepts including programming methods for various applications of modern production systems. Programmable logic controllers (PLC), numerical controllers (NC) and robot controllers (RC) are part of these presentations. In the context of automated manufacturing systems, the various levels of the automation pyramid and the importance of control systems are also outlined. Finally, the volume deals with the engineering of machines and plants. The German Machine Tools and Production Systems Compendium has been completely revised. The previous five-volume series has been condensed into three volumes in the new ninth edition with colored technical illustrations throughout. This first English edition is a translation of the German ninth edition.