Effects of Land-use Change on Benthic Macroinvertebrates in the Upper Reaches of the Apies-Pienaar Catchment

Effects of Land-use Change on Benthic Macroinvertebrates in the Upper Reaches of the Apies-Pienaar Catchment

Author: Joseph Alexander Mulders

Publisher:

Published: 2015

Total Pages: 122

ISBN-13:

DOWNLOAD EBOOK

Urbanisation of catchment areas is a major cause of freshwater ecosystem degradation worldwide. As catchments become more developed and river ecosystems become increasingly engulfed in various land use activities, there is a growing need to understand these impacts on freshwater ecosystems. Benthic macroinvertebrates are extensively used as indicators of ecosystem health and have been an instrumental tool in ecosystem monitoring and management. The effects of changing land use on macroinvertebrates at a fine scale however, have not been extensively investigated. Therefore an investigation was conducted to compare chemical, physical and biological surface water quality parameters and aquatic macroinvertebrate community composition along the first 8 km of the Hartbeesspruit, which contains multiple land use types, in the upper Apies-Pienaar catchment in Gauteng, South Africa. Five sampling sites corresponding to changes in land use were sampled four times at six-week intervals from September 2013 to February 2014. Influential variables that were recorded included in-stream habitat, riparian cover, flow regime and surface water quality parameters. Physical surface water parameters that were tested in situ included pH, salinity, total dissolved solutes, temperature, clarity and conductivity. Ex situ surface water parameters that were tested included physical parameters (alkalinity and turbidity), chemical parameters (major ions, metal ions and nutrients), and biological parameters (bacteria, coliforms and Escherichia coli). Macroinvertebrates were sampled using Hester-Dendy artificial samplers, which, following a 6 week exposure period, were sampled three times from November 2013 to February 2014. Macroinvertebrates were identified to family level and counted. Macroinvertebrate community composition across sites was assessed through macroinvertebrate abundance, family richness, SASS score, ASPT, Shannon-Wiener index, Pielou s evenness, non-metric multidimensional scaling and Indval analyses. Nineteen families were collected, of which only three made up 80% of macroinvertebrates sampled. These families were Hirudinea, Chironomidae and Oligochaeta. Indices of macroinvertebrate community composition indicated a general increase in value from upstream to downstream which showed similar comparative variation between sites to physical water quality parameters (except temperature and clarity), major ions (except arsenic), the metal ion magnesium and nutrient sulphate. Surface water parameters showed patterns indicative of effects due to evaporation, dilution and connectivity of water flow along the stream due to the presence of dams and wetlands. Temperature was an important influence on macroinvertebrate abundance and family richness at a temporal scale. On a spatial scale the most influential parameters on macroinvertebrate composition were seen to be depth, turbidity and conductivity, and temperature to a lesser extent. The land use types that showed the greatest association with various assemblages were the urban, recreational and least transformed wetland land uses. Although major influential factors, this pattern was not seen to be strictly due to the input of contaminants arising from associated activities, nor the variation in physical characteristics, but rather the discontinuity in flow regime. It was concluded that at a fine scale, the strongest factors that influenced macroinvertebrate community composition along the Hartbeesspruit, was not land use type but rather the hydrological pathways of connectivity and stream flow that exist within the system. The hydrological pathways influenced values and concentrations of chemical and physical surface water parameters which in turn further influenced macroinvertebrate assemblages present.


Macroinvertebrate Community Composition in Stream Networks Across Three Land Cover Types

Macroinvertebrate Community Composition in Stream Networks Across Three Land Cover Types

Author: Raj Kiran Parmar

Publisher:

Published: 2018

Total Pages: 124

ISBN-13:

DOWNLOAD EBOOK

Land cover change strongly affects biodiversity in stream ecosystems, with several studies demonstrating the negative impacts of agricultural and urban expansion on local community richness. However, little is known of the effects of land cover on the variation among sets of local communities in stream networks, as well as the drivers of community variation in these systems. Using the metacommunity framework, this study takes a multi-scale approach to understand how macroinvertebrate communities are assembled across three catchment land cover types; native forest, agricultural and urban. Specifically, the aims of this study are to assess; (1) how stream network land cover influences alpha and beta diversity of macroinvertebrate communities and, (2) the relative role of local environmental conditions and spatial dispersal variables in structuring these communities. Benthic macroinvertebrate samples and local in-stream and riparian environmental variables were collected at 20 sampling sites in each of the six study stream networks in Auckland. Spatial distance proxies of macroinvertebrate dispersal in stream networks were calculated using geospatial techniques. Community alpha and beta diversity, environmental and distance variables were analysed using multivariate statistical techniques. Comparisons showed reference forest and impacted (agricultural and urban) networks supported distinct communities, with lower alpha diversity in the impacted stream networks. Unexpectedly, beta diversity in the impacted networks was greater than, or equal to the reference stream networks, with community dissimilarity almost entirely driven by species turnover. Overall, irrespective of land cover, macroinvertebrate communities were largely structured by local environmental conditions. Benthic substrate and the presence and composition of riparian vegetation were the most significant local environmental variables influencing community composition. Spatial dispersal limitation variables had a small, but significant, effect on inter-site community dissimilarity and overall community structure in each catchment. Network distance between local communities explained the greatest variation in community dissimilarity of the three distance types. This study identified potential drivers of macroinvertebrate community variation in Auckland streams, specifically highlighting the relative role of local environmental and spatial dispersal processes. The results of this study have relevance for biomonitoring and state of environment reporting of Auckland’s freshwater systems, as well as future stream rehabilitation projects.


Determining the Association Between the Structure of Stream Benthic Macroinvertebrate Communities and Agricultural Best Management Practices

Determining the Association Between the Structure of Stream Benthic Macroinvertebrate Communities and Agricultural Best Management Practices

Author: Roger Holmes (M.Sc.)

Publisher:

Published: 2014

Total Pages: 174

ISBN-13:

DOWNLOAD EBOOK

Farmers have been encouraged to adopt more sustainable farming practices (BMPs) that mitigate adverse agricultural effects on the natural environment. However, the ability of BMPs to protect or restore riverine systems continues to be questioned due to limited evidence directly linking BMP use with improved ecological conditions. The exclusion of hydrological pathways in previous field studies may explain why a direct link has not yet been established. The goal of this study was to assess the association between benthic macroinvertebrate community structure and the number and location of agricultural BMPs. Macroinvertebrates and water chemistry were sampled in 30 headwater catchments in the Grand River Watershed. Catchments exhibited gradients of BMP use and location as measured by the degree of hydrologic connectedness. Stepwise ordination regressions and variance partitioning were used to determine which environmental variables (i.e., BMP metrics, water chemistry parameters, habitat characteristics, and land use variables) were associated with benthic macroinvertebrate community structure. Water chemistry parameters were negatively associated with BMP metrics suggesting BMPs were mitigating losses of nutrients and sediments. However, BMP abundance and location explained minimal variation in benthic macroinvertebrate structure within the 30 sampled catchments. The absence of a strong association between BMPs and benthic macroinvertebrates may indicate a need for greater numbers and targeted siting of BMPS to improve water quality beyond a threshold point that would allow recolonization of intolerant invertebrate taxa. Focusing of conservation goals on ecological conditions and the promotion of BMPs that enhance in-stream habitat may also be required.


RELATIONSHIP BETWEEN LAND USE, HABITAT, AND AQUATIC BENTHIC INVERTEBRATE COMMUNITIES IN TROPICAL MONTANE FORESTS

RELATIONSHIP BETWEEN LAND USE, HABITAT, AND AQUATIC BENTHIC INVERTEBRATE COMMUNITIES IN TROPICAL MONTANE FORESTS

Author: Savannah Justus

Publisher:

Published: 2017

Total Pages: 55

ISBN-13:

DOWNLOAD EBOOK

Research shows that changes in surrounding land use may have negative impacts on freshwater benthic systems through changes in surrounding physical habitat, increased nutrient inputs, or non-point pollution (Neumann & Dudgeon 2002). Riparian zone condition can alter erosion and sediment input, temperature, and food availability. Benthic macroinvertebrates play a key role in ecosystem processing in freshwater systems and are indicators of environmental stress. Although the effects of agricultural land use has been studied in temperate regions, little research has been done in Costa Rica, where high deforestation rates are threatening tropical montane forests (Foster 2001). This study compares invertebrate communities between protected forested streams and streams surrounded by agricultural land to understand how macrohabitat and microhabitat features affect richness, diversity, and community composition. Forested streams had significantly higher richness, diversity, habitat indicator scores, and QHEI scores. Channel morphology and riparian zone condition scores were significantly higher in forested streams. Riffles had more similar communities than pools based on Bray- Curtis dissimilarity. Overall, agricultural streams are a less suitable habitat for benthic macroinvertebrates but it is still unclear if microhabitat or macrohabitat differences have a stronger effect on community structure. This study reflects the importance of understanding how natural variation compares to large-scale land use. As agricultural expansion continues, we must understand how this will affect stream systems so we are able to mitigate any negative effects.