This volume and its companion volume LNAI 4441 constitute a state-of-the-art survey in the field of speaker classification. Together they address such intriguing issues as how speaker characteristics are manifested in voice and speaking behavior. The nineteen contributions in this volume are organized into topical sections covering fundamentals, characteristics, applications, methods, and evaluation.
Robust Automatic Speech Recognition: A Bridge to Practical Applications establishes a solid foundation for automatic speech recognition that is robust against acoustic environmental distortion. It provides a thorough overview of classical and modern noise-and reverberation robust techniques that have been developed over the past thirty years, with an emphasis on practical methods that have been proven to be successful and which are likely to be further developed for future applications.The strengths and weaknesses of robustness-enhancing speech recognition techniques are carefully analyzed. The book covers noise-robust techniques designed for acoustic models which are based on both Gaussian mixture models and deep neural networks. In addition, a guide to selecting the best methods for practical applications is provided.The reader will: - Gain a unified, deep and systematic understanding of the state-of-the-art technologies for robust speech recognition - Learn the links and relationship between alternative technologies for robust speech recognition - Be able to use the technology analysis and categorization detailed in the book to guide future technology development - Be able to develop new noise-robust methods in the current era of deep learning for acoustic modeling in speech recognition - The first book that provides a comprehensive review on noise and reverberation robust speech recognition methods in the era of deep neural networks - Connects robust speech recognition techniques to machine learning paradigms with rigorous mathematical treatment - Provides elegant and structural ways to categorize and analyze noise-robust speech recognition techniques - Written by leading researchers who have been actively working on the subject matter in both industrial and academic organizations for many years
Research in the field of automatic speech and speaker recognition has made a number of significant advances in the last two decades, influenced by advances in signal processing, algorithms, architectures, and hardware. These advances include: the adoption of a statistical pattern recognition paradigm; the use of the hidden Markov modeling framework to characterize both the spectral and the temporal variations in the speech signal; the use of a large set of speech utterance examples from a large population of speakers to train the hidden Markov models of some fundamental speech units; the organization of speech and language knowledge sources into a structural finite state network; and the use of dynamic, programming based heuristic search methods to find the best word sequence in the lexical network corresponding to the spoken utterance. Automatic Speech and Speaker Recognition: Advanced Topics groups together in a single volume a number of important topics on speech and speaker recognition, topics which are of fundamental importance, but not yet covered in detail in existing textbooks. Although no explicit partition is given, the book is divided into five parts: Chapters 1-2 are devoted to technology overviews; Chapters 3-12 discuss acoustic modeling of fundamental speech units and lexical modeling of words and pronunciations; Chapters 13-15 address the issues related to flexibility and robustness; Chapter 16-18 concern the theoretical and practical issues of search; Chapters 19-20 give two examples of algorithm and implementational aspects for recognition system realization. Audience: A reference book for speech researchers and graduate students interested in pursuing potential research on the topic. May also be used as a text for advanced courses on the subject.
This book gathers selected high-quality research papers presented at the Seventh International Congress on Information and Communication Technology, held at Brunel University, London, on February 21–24, 2022. It discusses emerging topics pertaining to information and communication technology (ICT) for managerial applications, e-governance, e-agriculture, e-education and computing technologies, the Internet of Things (IoT) and e-mining. Written by respected experts and researchers working on ICT, the book offers a valuable asset for young researchers involved in advanced studies. The work is presented in four volumes.
This book discusses speaker recognition methods to deal with realistic variable noisy environments. The text covers authentication systems for; robust noisy background environments, functions in real time and incorporated in mobile devices. The book focuses on different approaches to enhance the accuracy of speaker recognition in presence of varying background environments. The authors examine: (a) Feature compensation using multiple background models, (b) Feature mapping using data-driven stochastic models, (c) Design of super vector- based GMM-SVM framework for robust speaker recognition, (d) Total variability modeling (i-vectors) in a discriminative framework and (e) Boosting method to fuse evidences from multiple SVM models.
A best-seller in its print version, this comprehensive CD-ROM reference contains unique, fully searchable coverage of all major topics in digital signal processing (DSP), establishing an invaluable, time-saving resource for the engineering community. Its unique and broad scope includes contributions from all DSP specialties, including: telecommunications, computer engineering, acoustics, seismic data analysis, DSP software and hardware, image and video processing, remote sensing, multimedia applications, medical technology, radar and sonar applications
In 25 original chapter-articles, leading authorities address various aspects of speech signal processing, stressing the advances during the past five to ten years. The volume presents a wealth of material, in a variety of styles, and is divided into four sections: analysis and coding (nine chapters)
An emerging technology, Speaker Recognition is becoming well-known for providing voice authentication over the telephone for helpdesks, call centres and other enterprise businesses for business process automation. "Fundamentals of Speaker Recognition" introduces Speaker Identification, Speaker Verification, Speaker (Audio Event) Classification, Speaker Detection, Speaker Tracking and more. The technical problems are rigorously defined, and a complete picture is made of the relevance of the discussed algorithms and their usage in building a comprehensive Speaker Recognition System. Designed as a textbook with examples and exercises at the end of each chapter, "Fundamentals of Speaker Recognition" is suitable for advanced-level students in computer science and engineering, concentrating on biometrics, speech recognition, pattern recognition, signal processing and, specifically, speaker recognition. It is also a valuable reference for developers of commercial technology and for speech scientists. Please click on the link under "Additional Information" to view supplemental information including the Table of Contents and Index.
Now available in a three-volume set, this updated and expanded edition of the bestselling The Digital Signal Processing Handbook continues to provide the engineering community with authoritative coverage of the fundamental and specialized aspects of information-bearing signals in digital form. Encompassing essential background material, technical details, standards, and software, the second edition reflects cutting-edge information on signal processing algorithms and protocols related to speech, audio, multimedia, and video processing technology associated with standards ranging from WiMax to MP3 audio, low-power/high-performance DSPs, color image processing, and chips on video. Drawing on the experience of leading engineers, researchers, and scholars, the three-volume set contains 29 new chapters that address multimedia and Internet technologies, tomography, radar systems, architecture, standards, and future applications in speech, acoustics, video, radar, and telecommunications. This volume, Video, Speech, and Audio Signal Processing and Associated Standards, provides thorough coverage of the basic foundations of speech, audio, image, and video processing and associated applications to broadcast, storage, search and retrieval, and communications.