There are currently many controversial socioeconomic issues concerned with the development and implementation of agricultural biotechnology. This book presents selected revised and edited papers from the fourth and fifth meetings of the International Consortium on Agricultural Biotechnology Research, held in Italy in 2000 and 2001.
A challenge of our generation is the creation of an efficient system providing sustainable food and fuel from the land whilst also preserving biodiversity and ecosystems. We must feed a human population that is expected to grow to more than nine billion by mid-century. Agricultural biotechnology is one tool that holds potential promise to alleviate hunger and poverty. However, there are complex and interrelated scientific, social, political and ethical questions regarding the widespread use of biotechnology in the food supply. This edited volume discusses diverse perspectives on sustainable food production systems in terms of challenges, opportunities, success stories, barriers and risks associated with agricultural and food biotechnology. The effects of biotechnology on the environment, ethical and moral issues, potential changes to government policies and economics, and social implications are summarised. This book will interest students, professionals and researchers from the areas of bioengineering, agriculture and ecosystem science to economics and political science.
Transgenic crops offer the promise of increased agricultural productivity and better quality foods. But they also raise the specter of harmful environmental effects. In this new book, a panel of experts examines: • Similarities and differences between crops developed by conventional and transgenic methods • Potential for commercialized transgenic crops to change both agricultural and nonagricultural landscapes • How well the U.S. government is regulating transgenic crops to avoid any negative effects. Environmental Effects of Transgenic Plants provides a wealth of information about transgenic processes, previous experience with the introduction of novel crops, principles of risk assessment and management, the science behind current regulatory schemes, issues in monitoring transgenic products already on the market, and more. The book discusses public involvementâ€"and public confidenceâ€"in biotechnology regulation. And it looks to the future, exploring the potential of genetic engineering and the prospects for environmental effects.
Describes the economic, scientific, and social factors that will influence the future of biotechnology in agriculture. Shows that both private and public sector R&D are contributing significantly to the development of biotechnologies. A review of 23 published studies on the subject.
Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
This book presents the perspectives of policy-makers and economists on a highly topical subject. Plant breeding patents, the ownership of biological innovation and associated intellectual property rights (IPR) are the subject of increased attention worldwide. They are particularly relevant in the field of agricultural biotechnology, but until recently evoked little policy analysis.IPRs are particularly relevant in the field of agricultural biotechnology. They are issues affecting public and private sector organizations and companies, and are significant for developing as well as developed countries.
The often-confrontational debate over the development of agricultural and pharmaceutical products made with the help of genetic modification has drastically limited the exploitation of this still new technology. This book focuses on the risk and rewards of genetic modification, the differing paths the dialogue on GM has followed in Europe and the developing world in contrast to the United States, how the debate impacts the commercial realities of companies developing new products, and what strategies might foster more constructive discussion over the costs and benefits of genetic manipulation to bring about more rational and internationally coordinated public policy.
A single seed is more than just the promise of a plant. In rural south India, seeds represent diverging paths toward a sustainable livelihood. Development programs and global agribusiness promote genetically modified seeds and organic certification as a path toward more sustainable cotton production, but these solutions mask a complex web of economic, social, political, and ecological issues that may have consequences as dire as death. In Cultivating Knowledge anthropologist Andrew Flachs shows how rural farmers come to plant genetically modified or certified organic cotton, sometimes during moments of agrarian crisis. Interweaving ethnographic detail, discussions of ecological knowledge, and deep history, Flachs uncovers the unintended consequences of new technologies, which offer great benefits to some—but at others’ expense. Flachs shows that farmers do not make simple cost-benefit analyses when evaluating new technologies and options. Their evaluation of development is a complex and shifting calculation of social meaning, performance, economics, and personal aspiration. Only by understanding this complicated nexus can we begin to understand sustainable agriculture. By comparing the experiences of farmers engaged with these mutually exclusive visions for the future of agriculture, Cultivating Knowledge investigates the human responses to global agrarian change. It illuminates the local impact of global changes: the slow, persistent dangers of pesticides, inequalities in rural life, the aspirations of people who grow fibers sent around the world, the place of ecological knowledge in modern agriculture, and even the complex threat of suicide. It all begins with a seed.
Continued population growth, rapidly changing consumption patterns and the impacts of climate change and environmental degradation are driving limited resources of food, energy, water and materials towards critical thresholds worldwide. These pressures are likely to be substantial across Africa, where countries will have to find innovative ways to boost crop and livestock production to avoid becoming more reliant on imports and food aid. Sustainable agricultural intensification - producing more output from the same area of land while reducing the negative environmental impacts - represents a solution for millions of African farmers. This volume presents the lessons learned from 40 sustainable agricultural intensification programmes in 20 countries across Africa, commissioned as part of the UK Government's Foresight project. Through detailed case studies, the authors of each chapter examine how to develop productive and sustainable agricultural systems and how to scale up these systems to reach many more millions of people in the future. Themes covered include crop improvements, agroforestry and soil conservation, conservation agriculture, integrated pest management, horticulture, livestock and fodder crops, aquaculture, and novel policies and partnerships.
In the international effort to advance human health, welfare, and development while better managing and conserving the environment and natural resources, there is a clear and growing recognition of the role of scientific and technical knowledge in global governance. This has created an urgent need for the United Nations to equip itself with the capability to bring scientific knowledge to inform international decision making. Given the complexity and diversity of United Nations programs, organs, and mandates, this report focuses on the main functions of the United Nations that affect international governance in the fields related to sustainable development, with reference to the taxonomy of the key United Nations organs in which these functions are undertaken. Efforts have been made to ensure that the major categories of United Nations organs have been covered and therefore the results of the review are representative of the functioning of the United Nations system.