The ecological relationships found to exist between tick vectors and pathogens in their zootic cycle can profoundly influence patterns of transmission and disease for humans and domestic animals. This book examines the ecological parameters affecting the conservation and regulation of tick-borne zoonoses as well as the geographic and seasonal distributions of those infections. Written by an eminent authority on the subject, the book will be sought after by students and researchers in ecology, invertebrate zoology, parasitology, entomology, public health, and epidemiology.
The ecological relationships found to exist between tick vectors and pathogens in their zootic cycle can profoundly influence patterns of transmission and disease for humans and domestic animals. This book examines the ecological parameters affecting the conservation and regulation of tick-borne zoonoses as well as the geographic and seasonal distributions of those infections. Written by an eminent authority on the subject, the book will be sought after by students and researchers in ecology, invertebrate zoology, parasitology, entomology, public health, and epidemiology.
This book brings together expert opinions from scientists to consider the evidence for climate change and its impacts on ticks and tick-borne infections. It considers what is meant by 'climate change', how effective climate models are in relation to ecosystems, and provides predictions for changes in climate at global, regional and local scales relevant for ticks and tick-borne infections. It examines changes to tick distribution and the evidence that climate change is responsible. The effect of climate on the physiology and behaviour of ticks is stressed, including potentially critical impacts on the tick microbiome. Given that the notoriety of ticks derives from pathogens they transmit, the book considers whether changes in climate affect vector capacity. Ticks transmit a remarkable range of micro- and macro-parasites many of which are pathogens of humans and domesticated animals. The intimacy between a tick-borne agent and a tick vector means that any impacts of climate on a tick vector will impact tick-borne pathogens. Most obviously, such impacts will be apparent as changes in disease incidence and prevalence. The evidence that climate change is affecting diseases caused by tick-borne pathogens is considered, along with the potential to make robust predictions of future events.
The only available reference to comprehensively discuss the common and unusual types of rickettsiosis in over twenty years, this book will offer the reader a full review on the bacteriology, transmission, and pathophysiology of these conditions. Written from experts in the field from Europe, USA, Africa, and Asia, specialists analyze specific patho
It is vital to understand ticks and tick-borne pathogens as well as their impact on humans. This book is intended for students in parasitology, biologists, parasitologists involved in molecular diagnostics of tick-borne diseases, practicing veterinarians, and for others who may require information on ticks and tick-borne diseases. Here we have put together a collection of chapters focused on different aspects of ticks and tick-borne diseases mainly to provide the reader with novel information in the field, but not the basic generalised information provided by many textbooks. This book includes topics such as high-throughput technologies in diagnosis, discovery of novel tick vaccines, identification of new pathogens transmitted by ticks, and new epidemiological information of certain well-known ticks and tick-borne diseases. These chapters were authored by parasitologists from all over the world, giving an insight to the reader about significant ticks and tick-borne diseases prevalent in those particular geographical regions with the local expert's point of view. Each of the chapters has separate reference lists, making it easier for the reader to find additional reading material related to their topic of interest.
News headlines are forever reporting diseases that take huge tolls on humans, wildlife, domestic animals, and both cultivated and native plants worldwide. These diseases can also completely transform the ecosystems that feed us and provide us with other critical benefits, from flood control to water purification. And yet diseases sometimes serve to maintain the structure and function of the ecosystems on which humans depend. Gathering thirteen essays by forty leading experts who convened at the Cary Conference at the Institute of Ecosystem Studies in 2005, this book develops an integrated framework for understanding where these diseases come from, what ecological factors influence their impacts, and how they in turn influence ecosystem dynamics. It marks the first comprehensive and in-depth exploration of the rich and complex linkages between ecology and disease, and provides conceptual underpinnings to understand and ameliorate epidemics. It also sheds light on the roles that diseases play in ecosystems, bringing vital new insights to landscape management issues in particular. While the ecological context is a key piece of the puzzle, effective control and understanding of diseases requires the interaction of professionals in medicine, epidemiology, veterinary medicine, forestry, agriculture, and ecology. The essential resource on the subject, Infectious Disease Ecology seeks to bridge these fields with an ecological approach that focuses on systems thinking and complex interactions.
Widespread and increasing resistance to most available acaracides threatens both global livestock industries and public health. This necessitates better understanding of ticks and the diseases they transmit in the development of new control strategies. Ticks: Biology, Disease and Control is written by an international collection of experts and covers in-depth information on aspects of the biology of the ticks themselves, various veterinary and medical tick-borne pathogens, and aspects of traditional and potential new control methods. A valuable resource for graduate students, academic researchers and professionals, the book covers the whole gamut of ticks and tick-borne diseases from microsatellites to satellite imagery and from exploiting tick saliva for therapeutic drugs to developing drugs to control tick populations. It encompasses the variety of interconnected fields impinging on the economically important and biologically fascinating phenomenon of ticks, the diseases they transmit and methods of their control.
Since the dawn of medical science, people have recognized connections between a change in the weather and the appearance of epidemic disease. With today's technology, some hope that it will be possible to build models for predicting the emergence and spread of many infectious diseases based on climate and weather forecasts. However, separating the effects of climate from other effects presents a tremendous scientific challenge. Can we use climate and weather forecasts to predict infectious disease outbreaks? Can the field of public health advance from "surveillance and response" to "prediction and prevention?" And perhaps the most important question of all: Can we predict how global warming will affect the emergence and transmission of infectious disease agents around the world? Under the Weather evaluates our current understanding of the linkages among climate, ecosystems, and infectious disease; it then goes a step further and outlines the research needed to improve our understanding of these linkages. The book also examines the potential for using climate forecasts and ecological observations to help predict infectious disease outbreaks, identifies the necessary components for an epidemic early warning system, and reviews lessons learned from the use of climate forecasts in other realms of human activity.
Population Biology of Vector-Borne Diseases is the first comprehensive survey of this rapidly developing field. The chapter topics provide an up-to-date presentation of classical concepts, reviews of emerging trends, synthesis of existing knowledge, and a prospective agenda for future research. The contributions offer authoritative and international perspectives from leading thinkers in the field. The dynamics of vector-borne diseases are far more intrinsically ecological compared with their directly transmitted equivalents. The environmental dependence of ectotherm vectors means that vector-borne pathogens are acutely sensitive to changing environmental conditions. Although perennially important vector-borne diseases such as malaria and dengue have deeply informed our understanding of vector-borne diseases, recent emerging viruses such as West Nile virus, Chikungunya virus, and Zika virus have generated new scientific questions and practical problems. The study of vector-borne disease has been a particularly rich source of ecological questions, while ecological theory has provided the conceptual tools for thinking about their evolution, transmission, and spatial extent. Population Biology of Vector-Borne Diseases is an advanced textbook suitable for graduate level students taking courses in vector biology, population ecology, evolutionary ecology, disease ecology, medical entomology, viral ecology/evolution, and parasitology, as well as providing a key reference for researchers across these fields.