Earthquake Hazard and Seismic Risk Reduction

Earthquake Hazard and Seismic Risk Reduction

Author: Serguei Balassanian

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 465

ISBN-13: 9401595445

DOWNLOAD EBOOK

In 1998 Armenia was commemorating the tenth anniversary of the catastrophic Spitak earthquake. The Second International Conference on "Earthquake Hazard and Seismic Risk Reduction" sponsored by the Government of the Republic of Armenia and United Nation's International Decade for Natural Disaster Reduction (UN/IDNDR) was held in dedication to that event between 14-21 September (later referred to as Yerevan Conference). The Yerevan Conference has been organized by the National Survey for Seismic Protection (NSSP) of the Republic of Armenia. All level's decision-makers (from the ministers to the local authorities), politicians, scientists, leaders of the executive and legislative powers, psychologists, leading businessmen, representatives from the private sector and the media as well as from the International Organizations have been invited by the Armenian NSSP to take part in joint discussion of the Seismic Risk Reduction Problem for the first time in the history of such forums. Armenian NSSP's such initiative has been triggered by the experience of the Spitak earthquake and other disasters. They showed that it will be possible to reduce the risks, posed by the natural disaster, only through the common efforts of all the community in co-operation with the International institutions.


Earthquake Risk Reduction

Earthquake Risk Reduction

Author: David J. Dowrick

Publisher: John Wiley & Sons

Published: 2003-09-12

Total Pages: 520

ISBN-13: 0470869348

DOWNLOAD EBOOK

Encompassing theory and field experience, this book covers all the main subject areas in earthquake risk reduction, ranging from geology, seismology, structural and soil dynamics to hazard and risk assessment, risk management and planning, engineering and the architectural design of new structures and equipment. Earthquake Risk Reduction outlines individual national weaknesses that contribute to earthquake risk to people and property; calculates the seismic response of soils and structures, using the structural continuum 'Subsoil - Substructure - Superstructure - Non-structure'; evaluates the effectiveness of given designs and construction procedures for reducing casualties and financial losses; provides guidance on the key issue of choice of structural form; presents earthquake resistant designs methods for the four main structural materials - steel, concrete, reinforced masonry and timber - as well as for services equipment, plant and non-structural architectural components; contains a chapter devoted to problems involved in improving (retrofitting) the existing built environment. Compiled from the author's extensive professional experience in earthquake engineering, this key text provides an excellent treatment of the complex multidisciplinary process of earthquake risk reduction. This book will prove an invaluable reference and guiding tool to practicing civil and structural engineers and architects, researchers and postgraduate students in seismology, local governments and risk management officials.


Advances in Earthquake Engineering for Urban Risk Reduction

Advances in Earthquake Engineering for Urban Risk Reduction

Author: S. Tanvir Wasti

Publisher: Springer Science & Business Media

Published: 2006-06-15

Total Pages: 563

ISBN-13: 1402045719

DOWNLOAD EBOOK

Earthquakes affecting urban areas can lead to catastrophic situations and hazard mitigation requires preparatory measures at all levels. Structural assessment is the diagnosis of the seismic health of buildings. Assessment is the prelude to decisions about rehabilitation or even demolition. The scale of the problem in dense urban settings brings about a need for macro seismic appraisal procedures because large numbers of existing buildings do not conform to the increased requirements of new earthquake codes and specifications or have other deficiencies. It is the vulnerable buildings - liable to cause damage and loss of life - that need immediate attention and urgent appraisal in order to decide if structural rehabilitation and upgrading are feasible. Current economic, efficient and occupant-friendly rehabilitation techniques vary widely and include the application either of precast concrete panels or layers, strips and patches of fiber reinforced polymers (FRP) in strategic locations. The papers in this book, many by renowned authorities in earthquake engineering, chart new and vital directions of research and application in the assessment and rehabilitation of buildings in seismic regions. While several papers discuss the probabilistic prediction and quantification of structural damage, others present approaches related with the in-situ and occupant friendly upgrading of buildings and propose both economical and practical techniques to address the problem.


Earthquake Science and Seismic Risk Reduction

Earthquake Science and Seismic Risk Reduction

Author: F. Mulargia

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 366

ISBN-13: 9401000417

DOWNLOAD EBOOK

What is the first thing that ordinary people, for whom journalists are the proxy, ask when they meet a seismologist? It is certainly nothing technical like "What was the stress drop of the last earthquake in the Imperial Valley?" It is a sim ple question, which nevertheless summarizes the real demands that society has for seismology. This question is "Can you predict earthquakes?" Regrettably, notwithstanding the feeling of omnipotence induced by modem technology, the answer at present is the very opposite of "Yes, of course". The primary motivation for the question "Can you predict earthquakes?" is practical. No other natural phenomenon has the tremendous destructive power of a large earthquake, a power which is rivaled only by a large scale war. An earth quake in a highly industrialized region is capable of adversely affecting the econ omy of the whole world for several years. But another motivation is cognitive. The aim of science is 'understanding' nature, and one of the best ways to show that we understand a phenomenon is the ability to make accurate predictions.


National Earthquake Resilience

National Earthquake Resilience

Author: National Research Council

Publisher: National Academies Press

Published: 2011-09-09

Total Pages: 197

ISBN-13: 0309186773

DOWNLOAD EBOOK

The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.


Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems

Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems

Author: S Tesfamariam

Publisher: Elsevier

Published: 2013-04-30

Total Pages: 920

ISBN-13: 0857098985

DOWNLOAD EBOOK

Earthquakes represent a major risk to buildings, bridges and other civil infrastructure systems, causing catastrophic loss to modern society. Handbook of seismic risk analysis and management of civil infrastructure systems reviews the state of the art in the seismic risk analysis and management of civil infrastructure systems.Part one reviews research in the quantification of uncertainties in ground motion and seismic hazard assessment. Part twi discusses methodologies in seismic risk analysis and management, whilst parts three and four cover the application of seismic risk assessment to buildings, bridges, pipelines and other civil infrastructure systems. Part five also discusses methods for quantifying dependency between different infrastructure systems. The final part of the book considers ways of assessing financial and other losses from earthquake damage as well as setting insurance rates.Handbook of seismic risk analysis and management of civil infrastructure systems is an invaluable guide for professionals requiring understanding of the impact of earthquakes on buildings and lifelines, and the seismic risk assessment and management of buildings, bridges and transportation. It also provides a comprehensive overview of seismic risk analysis for researchers and engineers within these fields. - This important handbook reviews the wealth of recent research in the area of seismic hazard analysis in modern earthquake design code provisions and practices - Examines research into the analysis of ground motion and seismic hazard assessment, seismic risk hazard methodologies - Addresses the assessment of seismic risks to buildings, bridges, water supply systems and other aspects of civil infrastructure


Earthquakes

Earthquakes

Author: Albert P. Quinn

Publisher: Nova Science Publishers

Published: 2014

Total Pages: 0

ISBN-13: 9781631175176

DOWNLOAD EBOOK

An earthquake is a natural disaster that causes damage world-wide. Not only earthquakes of high magnitude, but also those of small magnitude that strike unprepared regions can cause economic and social consequences, and many casualties. Unlike other natural disasters, the exact time of an earthquake cannot be estimated; scientists can only predict the timeline and magnitude based on the history of earthquakes in a region. Even though current technology cannot predict the precise time, location or magnitude, public awareness about the estimations allows both individuals and government to be ready for their devastating effects. This book begins by discussing how public awareness about the effects of earthquakes and how to prepare for a possible earthquake which can potentially save lives. The book then continues with topics that include seismic PRA; seismic safety assessments of existing buildings; psychiatric reactions of individuals to earthquakes; possible relation between an intense earthquake and the voltage signal generated by atmospheric ionic currents and/or sudden change of the electric field in the air; and others.


Living on an Active Earth

Living on an Active Earth

Author: National Research Council

Publisher: National Academies Press

Published: 2003-09-22

Total Pages: 431

ISBN-13: 0309065623

DOWNLOAD EBOOK

The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.