Earthquakes are nearly unique among natural phenomena - they affect virtually everything within a region, from massive buildings and bridges, down to the furnishings within a home. Successful earthquake engineering therefore requires a broad background in subjects, ranging from the geologic causes and effects of earthquakes to understanding the imp
Provides in-depth earthquake engineering analysis as applied to soils. Includes worked-out problems illustrating earthquake analyses and current seismic codes.
The subject of earthquake engineering has been the focus of my teaching and research for many years. Thus, when Mario Paz, the editor of this handbook, asked me to write a Foreword, I was interested and honored by his request. Worldwide, people are beginning to understand the severity of the danger to present and future generations caused by the destruction of the environment. Earthquakes pose a similar threat; thus, the proper use of methods for earthquake-resistant design and construction is vitally important for countries that are at high risk of being subjected to strong-motion earthquakes. Most seismic activity is the result of tectonic earthquakes. Tectonic earthquakes are very special events in that, although they occur frequently, their probability of becoming natural hazards for a specific urban area is very small. When a severe earthquake does occur near an urban area, however, its consequences are very large in terms of structural destruction and human suffering.
Modern scientific investigations of earthquakes began in the 1880s, and the International Association of Seismology was organized in 1901 to promote collaboration of scientists and engineers in studying earthquakes. The International Handbook of Earthquake and Engineering Seismology, under the auspices of the International Association of Seismology and Physics of the Earth's Interior (IASPEI), was prepared by leading experts under a distinguished international advisory board and team of editors.The content is organized into 56 chapters and includes over 430 figures, 24 of which are in color. This large-format, comprehensive reference summarizes well-established facts, reviews relevant theories, surveys useful methods and techniques, and documents and archives basic seismic data. It will be the authoritative reference for scientists and engineers and a quick and handy reference for seismologists.Also available is The International Handbook of Earthquake and Engineering Seismology, Part B.
This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building structures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calculator.
This fully updated second edition provides an introduction to geotechnical earthquake engineering for first-year graduate students in geotechnical or earthquake engineering graduate programs with a level of detail that will also be useful for more advanced students as well as researchers and practitioners. It begins with an introduction to seismology and earthquake ground motions, then presents seismic hazard analysis and performance-based earthquake engineering (PBEE) principles. Dynamic soil properties pertinent to earthquake engineering applications are examined, both to facilitate understanding of soil response to seismic loads and to describe their practical measurement as part of site characterization. These topics are followed by site response and its analysis and soil–structure interaction. Ground failure in the form of soil liquefaction, cyclic softening, surface fault rupture, and seismically induced landslides are also addressed, and the book closes with a chapter on soil improvement and hazard mitigation. The first edition has been widely used around the world by geotechnical engineers as well as many seismologists and structural engineers. The main text of this book and the four appendices: • Cover fundamental concepts in applied seismology, geotechnical engineering, and structural dynamics. • Contain numerous references for further reading, allowing for detailed exploration of background or more advanced material. • Present worked example problems that illustrate the application of key concepts emphasized in the text. • Include chapter summaries that emphasize the most important points. • Present concepts of performance-based earthquake engineering with an emphasis on uncertainty and the types of probabilistic analyses needed to implement PBEE in practice. • Present a broad, interdisciplinary narrative, drawing from the fields of seismology, geotechnical engineering, and structural engineering to facilitate holistic understanding of how geotechnical earthquake engineering is applied in seismic hazard and risk analyses and in seismic design.
This handbook contains up-to-date existing structures, computer applications, and infonnation on planning, analysis, and design seismic design of wood structures. A new and very useful feature of this edition of earthquake-resistant building structures. Its intention is to provide engineers, architects, is the inclusion of a companion CD-ROM disc developers, and students of structural containing the complete digital version of the handbook itself and the following very engineering and architecture with authoritative, yet practical, design infonnation. It represents important publications: an attempt to bridge the persisting gap between l. UBC-IBC (1997-2000) Structural advances in the theories and concepts of Comparisons and Cross References, ICBO, earthquake-resistant design and their 2000. implementation in seismic design practice. 2. NEHRP Guidelines for the Seismic The distinguished panel of contributors is Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, composed of 22 experts from industry and universities, recognized for their knowledge and 1997. extensive practical experience in their fields. 3. NEHRP Commentary on the Guidelinesfor They have aimed to present clearly and the Seismic Rehabilitation of Buildings, FEMA-274, Federal Emergency concisely the basic principles and procedures pertinent to each subject and to illustrate with Management Agency, 1997. practical examples the application of these 4. NEHRP Recommended Provisions for principles and procedures in seismic design Seismic Regulations for New Buildings and practice. Where applicable, the provisions of Older Structures, Part 1 - Provisions, various seismic design standards such as mc FEMA-302, Federal Emergency 2000, UBC-97, FEMA-273/274 and ATC-40 Management Agency, 1997.
Many important advances in designing earthquake-resistant structures have occurred over the last several years. Civil engineers need an authoritative source of information that reflects the issues that are unique to the field. Comprising chapters selected from the second edition of the best-selling Handbook of Structural Engineering, this book provides a tightly focused, economical guide to the theoretical, practical, and computational aspects of earthquake engineering. It discusses the fundamentals of earthquake engineering, the various types of earthquake damage to structures, seismic design of buildings and bridges, and performance-based seismic design and evaluation of building structures.
"This one-stop resource--filled with in-depth earthquake engineering analysis, testing procedures, seismic and construction codes--features new coverage of the 2012 International Building Code"--
This fascinating new book examines the issues of earthquake geotechnical engineering in a comprehensive way. It summarizes the present knowledge on earthquake hazards and their causative mechanisms as well as a number of other relevant topics. Information obtained from earthquake damage investigation (such as ground motion, landslides, earth pressure, fault action, or liquefaction) as well as data from laboratory tests and field investigation is supplied, together with exercises/questions.