Mechanics of non-holonomic systems

Mechanics of non-holonomic systems

Author: Sh.Kh Soltakhanov

Publisher: Springer Science & Business Media

Published: 2009-05-27

Total Pages: 354

ISBN-13: 3540858474

DOWNLOAD EBOOK

A general approach to the derivation of equations of motion of as holonomic, as nonholonomic systems with the constraints of any order is suggested. The system of equations of motion in the generalized coordinates is regarded as a one vector relation, represented in a space tangential to a manifold of all possible positions of system at given instant. The tangential space is partitioned by the equations of constraints into two orthogonal subspaces. In one of them for the constraints up to the second order, the motion low is given by the equations of constraints and in the other one for ideal constraints, it is described by the vector equation without reactions of connections. In the whole space the motion low involves Lagrangian multipliers. It is shown that for the holonomic and nonholonomic constraints up to the second order, these multipliers can be found as the function of time, positions of system, and its velocities. The application of Lagrangian multipliers for holonomic systems permits us to construct a new method for determining the eigenfrequencies and eigenforms of oscillations of elastic systems and also to suggest a special form of equations for describing the system of motion of rigid bodies. The nonholonomic constraints, the order of which is greater than two, are regarded as programming constraints such that their validity is provided due to the existence of generalized control forces, which are determined as the functions of time. The closed system of differential equations, which makes it possible to find as these control forces, as the generalized Lagrange coordinates, is compound. The theory suggested is illustrated by the examples of a spacecraft motion. The book is primarily addressed to specialists in analytic mechanics.


Dynamics of Nonholonomic Systems

Dynamics of Nonholonomic Systems

Author: Juru Isaakovich Ne_mark

Publisher: American Mathematical Soc.

Published: 2004-07-16

Total Pages: 530

ISBN-13: 082183617X

DOWNLOAD EBOOK

The goal of this book is to give a comprehensive and systematic exposition of the mechanics of nonholonomic systems, including the kinematics and dynamics of nonholonomic systems with classical nonholonomic constraints, the theory of stability of nonholonomic systems, technical problems of the directional stability of rolling systems, and the general theory of electrical machines. The book contains a large number of examples and illustrations.


Nonholonomic Mechanics and Control

Nonholonomic Mechanics and Control

Author: A.M. Bloch

Publisher: Springer

Published: 2015-11-05

Total Pages: 582

ISBN-13: 1493930176

DOWNLOAD EBOOK

This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.


Modern Robotics

Modern Robotics

Author: Kevin M. Lynch

Publisher: Cambridge University Press

Published: 2017-05-25

Total Pages: 545

ISBN-13: 1107156300

DOWNLOAD EBOOK

A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.


Kinematics and Dynamics of Multi-Body Systems

Kinematics and Dynamics of Multi-Body Systems

Author: J. Angeles

Publisher: Springer

Published: 2014-05-04

Total Pages: 344

ISBN-13: 3709143624

DOWNLOAD EBOOK

Three main disciplines in the area of multibody systems are covered: kinematics, dynamics, and control, as pertaining to systems that can be modelled as coupling or rigid bodies. The treatment is intended to give a state of the art of the topics discussed.


Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint

Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint

Author: Patrick J. Rabier

Publisher: SIAM

Published: 2000-01-01

Total Pages: 143

ISBN-13: 089871446X

DOWNLOAD EBOOK

Focuses on rigid body systems subjected to kinematic constraints and discusses in detail how the equations of motion are developed. The authors show that such motions can be modeled in terms of differential algebraic equations (DAEs), provided only that the correct variables are introduced.


Advances in Asian Mechanism and Machine Science

Advances in Asian Mechanism and Machine Science

Author: Nguyen Van Khang

Publisher: Springer Nature

Published: 2021-12-14

Total Pages: 976

ISBN-13: 3030918920

DOWNLOAD EBOOK

This book presents the proceedings of the 6th IFToMM Asian Mechanisms and Machine Science Conference (Asian MMS), held in Hanoi, Vietnam on December 15-18, 2021. It includes peer-reviewed papers on the latest advances in mechanism and machine science, discussing topics such as biomechanical engineering, computational kinematics, the history of mechanism and machine science, gearing and transmissions, multi-body dynamics, robotics and mechatronics, the dynamics of machinery, tribology, vibrations, rotor dynamics and vehicle dynamics. A valuable, up-to-date resource, it offers an essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.


Nonholonomic Motion Planning

Nonholonomic Motion Planning

Author: Zexiang Li

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 455

ISBN-13: 1461531764

DOWNLOAD EBOOK

Nonholonomic Motion Planning grew out of the workshop that took place at the 1991 IEEE International Conference on Robotics and Automation. It consists of contributed chapters representing new developments in this area. Contributors to the book include robotics engineers, nonlinear control experts, differential geometers and applied mathematicians. Nonholonomic Motion Planning is arranged into three chapter groups: Controllability: one of the key mathematical tools needed to study nonholonomic motion. Motion Planning for Mobile Robots: in this section the papers are focused on problems with nonholonomic velocity constraints as well as constraints on the generalized coordinates. Falling Cats, Space Robots and Gauge Theory: there are numerous connections to be made between symplectic geometry techniques for the study of holonomies in mechanics, gauge theory and control. In this section these connections are discussed using the backdrop of examples drawn from space robots and falling cats reorienting themselves. Nonholonomic Motion Planning can be used either as a reference for researchers working in the areas of robotics, nonlinear control and differential geometry, or as a textbook for a graduate level robotics or nonlinear control course.