Dynamics in One Complex Variable

Dynamics in One Complex Variable

Author: John Milnor

Publisher: Princeton University Press

Published: 2011-02-11

Total Pages: 313

ISBN-13: 1400835534

DOWNLOAD EBOOK

This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. This third edition contains a number of minor additions and improvements: A historical survey has been added, the definition of Lattés map has been made more inclusive, and the écalle-Voronin theory of parabolic points is described. The résidu itératif is studied, and the material on two complex variables has been expanded. Recent results on effective computability have been added, and the references have been expanded and updated. Written in his usual brilliant style, the author makes difficult mathematics look easy. This book is a very accessible source for much of what has been accomplished in the field.


Complex Dynamics

Complex Dynamics

Author: Lennart Carleson

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 181

ISBN-13: 1461243645

DOWNLOAD EBOOK

A discussion of the properties of conformal mappings in the complex plane, closely related to the study of fractals and chaos. Indeed, the book ends in a detailed study of the famous Mandelbrot set, which describes very general properties of such mappings. Focusing on the analytic side of this contemporary subject, the text was developed from a course taught over several semesters and aims to help students and instructors to familiarize themselves with complex dynamics. Topics covered include: conformal and quasi-conformal mappings, fixed points and conjugations, basic rational iteration, classification of periodic components, critical points and expanding maps, some applications of conformal mappings, the local geometry of the Fatou set, and quadratic polynomials and the Mandelbrot set.


A History of Complex Dynamics

A History of Complex Dynamics

Author: Daniel S. Alexander

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 175

ISBN-13: 366309197X

DOWNLOAD EBOOK

The contemporary study of complex dynamics, which has flourished so much in recent years, is based largely upon work by G. Julia (1918) and P. Fatou (1919/20). The goal of this book is to analyze this work from an historical perspective and show in detail, how it grew out of a corpus regarding the iteration of complex analytic functions. This began with investigations by E. Schröder (1870/71) which he made, when he studied Newton's method. In the 1880's, Gabriel Koenigs fashioned this study into a rigorous body of work and, thereby, influenced a lot the subsequent development. But only, when Fatou and Julia applied set theory as well as Paul Montel's theory of normal families, it was possible to develop a global approach to the iteration of rational maps. This book shows, how this intriguing piece of modern mathematics became reality.


A Course in Complex Analysis and Riemann Surfaces

A Course in Complex Analysis and Riemann Surfaces

Author: Wilhelm Schlag

Publisher: American Mathematical Society

Published: 2014-08-06

Total Pages: 402

ISBN-13: 0821898477

DOWNLOAD EBOOK

Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.


Visual Complex Analysis

Visual Complex Analysis

Author: Tristan Needham

Publisher: Oxford University Press

Published: 1997

Total Pages: 620

ISBN-13: 9780198534464

DOWNLOAD EBOOK

This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.


Complex Dynamics and Geometry

Complex Dynamics and Geometry

Author: Dominique Cerveau

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 212

ISBN-13: 9780821832288

DOWNLOAD EBOOK

In the last twenty years, the theory of holomorphic dynamical systems has had a resurgence of activity, particularly concerning the fine analysis of Julia sets associated with polynomials and rational maps in one complex variable. At the same time, closely related theories have had a similar rapid development, for example the qualitative theory of differential equations in the complex domain. The meeting, ``Etat de la recherche'', held at Ecole Normale Superieure de Lyon, presented the current state of the art in this area, emphasizing the unity linking the various sub-domains. This volume contains four survey articles corresponding to the talks presented at this meeting. D. Cerveau describes the structure of polynomial differential equations in the complex plane, focusing on the local analysis in neighborhoods of singular points. E. Ghys surveys the theory of laminations by Riemann surfaces which occur in many dynamical or geometrical situations. N. Sibony describes the present state of the generalization of the Fatou-Julia theory for polynomial or rational maps in two or more complex dimensions. Lastly, the talk by J.-C. Yoccoz, written by M. Flexor, considers polynomials of degree $2$ in one complex variable, and in particular, with the hyperbolic properties of these polynomials centered around the Jakobson theorem. This is a general introduction that gives a basic history of holomorphic dynamical systems, demonstrating the numerous and fruitful interactions among the topics. In the spirit of the ``Etat de la recherche de la SMF'' meetings, the articles are written for a broad mathematical audience, especially students or mathematicians working in different fields. This book is translated from the French edition by Leslie Kay.


Riemann Surfaces

Riemann Surfaces

Author: Lars Valerian Ahlfors

Publisher: Princeton University Press

Published: 2015-12-08

Total Pages: 397

ISBN-13: 140087453X

DOWNLOAD EBOOK

The theory of Riemann surfaces has a geometric and an analytic part. The former deals with the axiomatic definition of a Riemann surface, methods of construction, topological equivalence, and conformal mappings of one Riemann surface on another. The analytic part is concerned with the existence and properties of functions that have a special character connected with the conformal structure, for instance: subharmonic, harmonic, and analytic functions. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Dynamics in Several Complex Variables

Dynamics in Several Complex Variables

Author: John Erik Fornæss

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 71

ISBN-13: 0821803174

DOWNLOAD EBOOK

This CBMS lecture series, held in Albany, New York in June 1994 aimed to introduce the audience to the literature on complex dynamics in higher dimension. Some of the lectures are updated versions of earlier lectures given jointly with Nessim Sibony in Montreal 1993. the authro's intent in this book is to give an expansion of the Montreal lectures, basing complex dynamics in higher dimension systematically on pluripotential theory.