Dynamical Systems and Population Persistence

Dynamical Systems and Population Persistence

Author: Hal L. Smith

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 426

ISBN-13: 082184945X

DOWNLOAD EBOOK

Providing a self-contained treatment of persistence theory that is accessible to graduate students, this monograph includes chapters on infinite-dimensional examples including an SI epidemic model with variable infectivity, microbial growth in a tubular bioreactor, and an age-structured model of cells growing in a chemostat.


Dynamical Systems in Population Biology

Dynamical Systems in Population Biology

Author: Xiao-Qiang Zhao

Publisher: Springer Science & Business Media

Published: 2013-06-05

Total Pages: 285

ISBN-13: 0387217614

DOWNLOAD EBOOK

Population dynamics is an important subject in mathematical biology. A cen tral problem is to study the long-term behavior of modeling systems. Most of these systems are governed by various evolutionary equations such as difference, ordinary, functional, and partial differential equations (see, e. g. , [165, 142, 218, 119, 55]). As we know, interactive populations often live in a fluctuating environment. For example, physical environmental conditions such as temperature and humidity and the availability of food, water, and other resources usually vary in time with seasonal or daily variations. Therefore, more realistic models should be nonautonomous systems. In particular, if the data in a model are periodic functions of time with commensurate period, a periodic system arises; if these periodic functions have different (minimal) periods, we get an almost periodic system. The existing reference books, from the dynamical systems point of view, mainly focus on autonomous biological systems. The book of Hess [106J is an excellent reference for periodic parabolic boundary value problems with applications to population dynamics. Since the publication of this book there have been extensive investigations on periodic, asymptotically periodic, almost periodic, and even general nonautonomous biological systems, which in turn have motivated further development of the theory of dynamical systems. In order to explain the dynamical systems approach to periodic population problems, let us consider, as an illustration, two species periodic competitive systems dUI dt = !I(t,Ul,U2), (0.


Progress on Difference Equations and Discrete Dynamical Systems

Progress on Difference Equations and Discrete Dynamical Systems

Author: Steve Baigent

Publisher: Springer Nature

Published: 2021-01-04

Total Pages: 440

ISBN-13: 3030601072

DOWNLOAD EBOOK

This book comprises selected papers of the 25th International Conference on Difference Equations and Applications, ICDEA 2019, held at UCL, London, UK, in June 2019. The volume details the latest research on difference equations and discrete dynamical systems, and their application to areas such as biology, economics, and the social sciences. Some chapters have a tutorial style and cover the history and more recent developments for a particular topic, such as chaos, bifurcation theory, monotone dynamics, and global stability. Other chapters cover the latest personal research contributions of the author(s) in their particular area of expertise and range from the more technical articles on abstract systems to those that discuss the application of difference equations to real-world problems. The book is of interest to both Ph.D. students and researchers alike who wish to keep abreast of the latest developments in difference equations and discrete dynamical systems.


Persistence of Discrete Dynamical Systems in Infinite Dimensional State Spaces

Persistence of Discrete Dynamical Systems in Infinite Dimensional State Spaces

Author: Wen Jin

Publisher:

Published: 2014

Total Pages: 69

ISBN-13:

DOWNLOAD EBOOK

Persistence theory provides a mathematically rigorous answer to the question of population survival by establishing an initial-condition- independent positive lower bound for the long-term value of the population size. This study focuses on the persistence of discrete semiflows in infinite-dimensional state spaces that model the year-to-year dynamics of structured populations. The map which encapsulates the population development from one year to the next is approximated at the origin (the extinction state) by a linear or homogeneous map. The (cone) spectral radius of this approximating map is the threshold between extinction and persistence. General persistence results are applied to three particular models: a size-structured plant population model, a diffusion model (with both Neumann and Dirichlet boundary conditions) for a dispersing population of males and females that only mate and reproduce once during a very short season, and a rank-structured model for a population of males and females.


Persistence and Extinction Dynamics in Reaction-diffusion-advection Stream Population Model with Allee Effect Growth

Persistence and Extinction Dynamics in Reaction-diffusion-advection Stream Population Model with Allee Effect Growth

Author: Yan Wang

Publisher:

Published: 2019

Total Pages: 142

ISBN-13:

DOWNLOAD EBOOK

The question how aquatic populations persist in rivers when individuals are constantly lost due to downstream drift has been termed the ``drift paradox." Reaction-diffusion-advection models have been used to describe the spatial-temporal dynamics of stream population and they provide some qualitative explanations to the paradox. Here random undirected movement of individuals in the environment is described by passive diffusion, and an advective term is used to describe the directed movement in a river caused by the flow. In this work, the effect of spatially varying Allee effect growth rate on the dynamics of reaction-diffusion-advection models for the stream population is studied. In the first part, a reaction-diffusion-advection equation with strong Allee effect growth rate is proposed to model a single species stream population in a unidirectional flow. Under biologically reasonable boundary conditions, the existence of multiple positive steady states is shown when both the diffusion coefficient and the advection rate are small, which lead to different asymptotic behavior for different initial conditions. On the other hand, when the advection rate is large, the population becomes extinct regardless of initial condition under most boundary conditions. It is shown that the population persistence or extinction depends on Allee threshold, advection rate, diffusion coefficient and initial conditions, and there is also rich transient dynamical behavior before the eventual population persistence or extinction. The dynamical behavior of a reaction-diffusion-advection model of a stream population with weak Allee effect type growth is studied in the second part. Under the open environment, it is shown that the persistence or extinction of population depends on the diffusion coefficient, advection rate and type of boundary condition, and the existence of multiple positive steady states is proved for intermediate advection rate using bifurcation theory. On the other hand, for closed environment, the stream population always persists for all diffusion coefficients and advection rates. In the last part, the dynamics of a reaction-diffusion-advection benthic-drift population model that links changes in the flow regime and habitat availability with population dynamics is studied. In the model, the stream is divided into drift zone and benthic zone, and the population is divided into two interacting compartments, individuals residing in the benthic zone and individuals dispersing in the drift zone. The benthic population growth is assumed to be of strong Allee effect type. The influence of flow speed and individual transfer rates between zones on the population persistence and extinction is considered, and the criteria of population persistence or extinction are formulated and proved. All results are proved rigorously using the theory of partial differential equation, dynamical systems. Various mathematical tools such as bifurcation methods, variational methods, and monotone methods are applied to show the existence of multiple steady state solutions of models.


Discrete-Time Dynamics of Structured Populations and Homogeneous Order-Preserving Operators

Discrete-Time Dynamics of Structured Populations and Homogeneous Order-Preserving Operators

Author: Horst R. Thieme

Publisher: American Mathematical Society

Published: 2024-05-07

Total Pages: 357

ISBN-13: 1470474654

DOWNLOAD EBOOK

A fundamental question in the theory of discrete and continuous-time population models concerns the conditions for the extinction or persistence of populations – a question that is addressed mathematically by persistence theory. For some time, it has been recognized that if the dynamics of a structured population are mathematically captured by continuous or discrete semiflows and if these semiflows have first-order approximations, the spectral radii of certain bounded linear positive operators (better known as basic reproduction numbers) act as thresholds between population extinction and persistence. This book combines the theory of discrete-time dynamical systems with applications to population dynamics with an emphasis on spatial structure. The inclusion of two sexes that must mate to produce offspring leads to the study of operators that are (positively) homogeneous (of degree one) and order-preserving rather than linear and positive. While this book offers an introduction to ordered normed vector spaces, some background in real and functional analysis (including some measure theory for a few chapters) will be helpful. The appendix and selected exercises provide a primer about basic concepts and about relevant topics one may not find in every analysis textbook.


Differential Equations and Population Dynamics I

Differential Equations and Population Dynamics I

Author: Arnaud Ducrot

Publisher: Springer Nature

Published: 2022-07-21

Total Pages: 458

ISBN-13: 3030981363

DOWNLOAD EBOOK

This book provides an introduction to the theory of ordinary differential equations and its applications to population dynamics. Part I focuses on linear systems. Beginning with some modeling background, it considers existence, uniqueness, stability of solution, positivity, and the Perron–Frobenius theorem and its consequences. Part II is devoted to nonlinear systems, with material on the semiflow property, positivity, the existence of invariant sub-regions, the Linearized Stability Principle, the Hartman–Grobman Theorem, and monotone semiflow. Part III opens up new perspectives for the understanding of infectious diseases by applying the theoretical results to COVID-19, combining data and epidemic models. Throughout the book the material is illustrated by numerical examples and their MATLAB codes are provided. Bridging an interdisciplinary gap, the book will be valuable to graduate and advanced undergraduate students studying mathematics and population dynamics.


Introduction to Reaction-Diffusion Equations

Introduction to Reaction-Diffusion Equations

Author: King-Yeung Lam

Publisher: Springer Nature

Published: 2022-12-01

Total Pages: 316

ISBN-13: 3031204220

DOWNLOAD EBOOK

This book introduces some basic mathematical tools in reaction-diffusion models, with applications to spatial ecology and evolutionary biology. It is divided into four parts. The first part is an introduction to the maximum principle, the theory of principal eigenvalues for elliptic and periodic-parabolic equations and systems, and the theory of principal Floquet bundles. The second part concerns the applications in spatial ecology. We discuss the dynamics of a single species and two competing species, as well as some recent progress on N competing species in bounded domains. Some related results on stream populations and phytoplankton populations are also included. We also discuss the spreading properties of a single species in an unbounded spatial domain, as modeled by the Fisher-KPP equation. The third part concerns the applications in evolutionary biology. We describe the basic notions of adaptive dynamics, such as evolutionarily stable strategies and evolutionary branching points, in the context of a competition model of stream populations. We also discuss a class of selection-mutation models describing a population structured along a continuous phenotypical trait. The fourth part consists of several appendices, which present a self-contained treatment of some basic abstract theories in functional analysis and dynamical systems. Topics include the Krein-Rutman theorem for linear and nonlinear operators, as well as some elements of monotone dynamical systems and abstract competition systems. Most of the book is self-contained and it is aimed at graduate students and researchers who are interested in the theory and applications of reaction-diffusion equations.


Age-Structured Population Dynamics in Demography and Epidemiology

Age-Structured Population Dynamics in Demography and Epidemiology

Author: Hisashi Inaba

Publisher: Springer

Published: 2017-03-15

Total Pages: 566

ISBN-13: 981100188X

DOWNLOAD EBOOK

This book is the first one in which basic demographic models are rigorously formulated by using modern age-structured population dynamics, extended to study real-world population problems. Age structure is a crucial factor in understanding population phenomena, and the essential ideas in demography and epidemiology cannot be understood without mathematical formulation; therefore, this book gives readers a robust mathematical introduction to human population studies. In the first part of the volume, classical demographic models such as the stable population model and its linear extensions, density-dependent nonlinear models, and pair-formation models are formulated by the McKendrick partial differential equation and are analyzed from a dynamical system point of view. In the second part, mathematical models for infectious diseases spreading at the population level are examined by using nonlinear differential equations and a renewal equation. Since an epidemic can be seen as a nonlinear renewal process of an infected population, this book will provide a natural unification point of view for demography and epidemiology. The well-known epidemic threshold principle is formulated by the basic reproduction number, which is also a most important key index in demography. The author develops a universal theory of the basic reproduction number in heterogeneous environments. By introducing the host age structure, epidemic models are developed into more realistic demographic formulations, which are essentially needed to attack urgent epidemiological control problems in the real world.


Matrix Models for Population, Disease, and Evolutionary Dynamics

Matrix Models for Population, Disease, and Evolutionary Dynamics

Author: J. M. Cushing

Publisher: American Mathematical Society

Published: 2024-02-29

Total Pages: 293

ISBN-13: 1470473348

DOWNLOAD EBOOK

This book offers an introduction to the use of matrix theory and linear algebra in modeling the dynamics of biological populations. Matrix algebra has been used in population biology since the 1940s and continues to play a major role in theoretical and applied dynamics for populations structured by age, body size or weight, disease states, physiological and behavioral characteristics, life cycle stages, or any of many other possible classification schemes. With a focus on matrix models, the book requires only first courses in multivariable calculus and matrix theory or linear algebra as prerequisites. The reader will learn the basics of modeling methodology (i.e., how to set up a matrix model from biological underpinnings) and the fundamentals of the analysis of discrete time dynamical systems (equilibria, stability, bifurcations, etc.). A recurrent theme in all chapters concerns the problem of extinction versus survival of a population. In addition to numerous examples that illustrate these fundamentals, several applications appear at the end of each chapter that illustrate the full cycle of model setup, mathematical analysis, and interpretation. The author has used the material over many decades in a variety of teaching and mentoring settings, including special topics courses and seminars in mathematical modeling, mathematical biology, and dynamical systems.