Dynamic Simulation of the Chemical Looping Combustion Process

Dynamic Simulation of the Chemical Looping Combustion Process

Author: Johannes Haus

Publisher: Cuvillier Verlag

Published: 2020-12-09

Total Pages: 140

ISBN-13: 3736963351

DOWNLOAD EBOOK

In this Ph.D. thesis a system of coupled fluidized bed reactors is modelled and simulated dynamically. Chemical Looping Combustion was used as an exemplary process in both the numerical and the experimental part of this work. For the simulation purpose a novel flowsheeting software was used and models for the needed process units developed and integrated into this software. The needed unit models were three interconnected fluidized bed reactors in circulating and bubbling operation conditions, a cyclone for gas-solid separation and loop seals, which ensured solids transport and gas separation between the reactors. Additionally, lab scale experiments on the reactivity of the used solids, oxygen carrier and solid fuels, were conducted and kinetic parameters extracted. All unit models were connected to a process flowsheet and simulated dynamically. The simulation results were compared to experimental data from a 25 kWth pilot plant operated at the university by the author. It could be shown that a detailed and dynamic simulation of the whole process can be carried out over a time period of more than 45 minutes and the experimental results from start-up, steady state operation and shutdown of the plant were predicted accurately.


Chemical-looping Combustion (clc) and Reforming (clr): Closing the Gap Between Simulation and Experimentation

Chemical-looping Combustion (clc) and Reforming (clr): Closing the Gap Between Simulation and Experimentation

Author: Zhiquan Zhou

Publisher:

Published: 2015

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Chemical-looping combustion (CLC) is a method for the oxidation of hydrocarbons with in-situ O2 separation, resulting in energetically inexpensive CO2 sequestration. The basic concept of the process involves using a metal oxide as an oxygen carrier (OC) to transfer oxygen from an Oxidizer reactor to a Reducer reactor, where the hydrocarbons are oxidized by the lattice oxygen of the OC. The reduced oxygen carrier is then re-oxidized in the Oxidizer. Chemical-looping with oxygen uncoupling (CLOU) is very similar to normal CLC, with the major difference that the process employs certain metal oxides as oxygen carriers. CLOU takes advantage of the exothermic and spontaneous splitting of some metal oxides at high temperature, resulting in an overall thermodynamically favorable process for the transport of oxygen between the two reactors. The aim of this dissertation is to provide insights to the feasibility and efficiency of CLC, by closing the gap between simulation and experimentation in bench- and pilot-scale chemical-looping processes. The key ideas in this dissertation are to combine experimentation and dynamic simulation, understand the current experimental procedures for chemical-looping, and expand the laboratory finding to conceptual commercial systems.


Modeling and Simulation of Fluidized Bed Reactors for Chemical Looping Combustion

Modeling and Simulation of Fluidized Bed Reactors for Chemical Looping Combustion

Author: Ramesh K. Agarwal

Publisher: Springer

Published: 2023-12-17

Total Pages: 0

ISBN-13: 9783031113345

DOWNLOAD EBOOK

The book describes the clean coal technology of chemical looping combustion (CLC) for power generation with pure CO2 capture. The focus of the book is on the modeling and simulation of CLC. It includes fundamental concepts behind CLC and considers all categories of fluidized beds and reactors, including a variety of oxygen carriers. The book includes process simulations with Aspen Plus® software using coal, natural gas, and biomass and computational fluid dynamics (CFD) simulations using both the Eulerian and Lagrangian methods. It describes various drag models, turbulence models, and kinetics models required for CFD simulations of CLC and covers single reactor, partial, and full-simulations, single/multi-stage as well as single-particle simulations, and CLC with reverse flow. A large number of examples for both process simulations using Aspen Plus and CFD simulations using a variety of fluidized beds/reactors employing both the two-fluid and Computational Fluid Dynamics / Discrete Element Method (CFD-DEM) model are provided. Modeling and Simulation of Fluidized Bed Reactors for Chemical Looping Combustion will be an invaluable reference for industry practitioners and researchers in academic and industrial R&D currently working on clean energy technologies and power generation with carbon capture.


Developments in Combustion Technology

Developments in Combustion Technology

Author: Konstantinos Kyprianidis

Publisher: BoD – Books on Demand

Published: 2016-10-05

Total Pages: 432

ISBN-13: 9535126687

DOWNLOAD EBOOK

Over the past few decades, exciting developments have taken place in the field of combustion technology. The present edited volume intends to cover recent developments and provide a broad perspective of the key challenges that characterize the field. The target audience for this book includes engineers involved in combustion system design, operational planning and maintenance. Manufacturers and combustion technology researchers will also benefit from the timely and accurate information provided in this work. The volume is organized into five main sections comprising 15 chapters overall: - Coal and Biofuel Combustion - Waste Combustion - Combustion and Biofuels in Reciprocating Engines - Chemical Looping and Catalysis - Fundamental and Emerging Topics in Combustion Technology


Dynamic Flowsheet Simulation of Solids Processes

Dynamic Flowsheet Simulation of Solids Processes

Author: Stefan Heinrich

Publisher: Springer Nature

Published: 2020-06-20

Total Pages: 626

ISBN-13: 3030451682

DOWNLOAD EBOOK

This book presents the latest advances in flowsheet simulation of solids processes, focusing on the dynamic behaviour of systems with interconnected solids processing units, but also covering stationary simulation. The book includes the modelling of solids processing units, for example for comminution, sifting and particle formulation and also for reaction systems. Furthermore, it examines new approaches for the description of solids and their property distributions and for the mathematical treatment of flowsheets with multivariate population balances.


Computational Fluid Dynamics Modeling and Simulations of Fluidized Bed Reactors for Chemical Looping Combustion

Computational Fluid Dynamics Modeling and Simulations of Fluidized Bed Reactors for Chemical Looping Combustion

Author: Subhodeep Banerjee

Publisher:

Published: 2016

Total Pages: 102

ISBN-13:

DOWNLOAD EBOOK

Chemical looping combustion (CLC) is a next generation combustion technology that shows great promise as a solution for the need of high-efficiency low-cost carbon capture from fossil fueled power plants. To realize this technology on an industrial scale, the development of high-fidelity simulations is a necessary step to develop a thorough understanding of the CLC process. Although there have been a number of experimental studies on CLC in recent years, CFD simulations have been limited in the literature.In this dissertation, reacting flow simulations of a CLC reactor are developed using the Eulerian approach based on a laboratory-scale experiment of a dual fluidized bed CLC system. The salient features of the fluidization behavior in the air reactor and fuel reactor beds representing a riser and a bubbling bed respectively are accurately captured in the simulation. This work is one of the first 3-D simulations of a complete circulating dual fluidized bed system; it highlights the importance of conducting 3-D simulations of CLC systems and the need for more accurate empirical reaction rate data for future CLC simulations.Simulations of the multiphase flow with chemical reactions in a spouted bed fuel reactor for coal-direct CLC are performed based on the Lagrangian particle tracking approach. The Discrete Element Method (DEM) provides the means for tracking the motion of individual metal oxide particles in the CLC system as they react with the fuel and is coupled with CFD for capturing the solid-gas multiphase hydrodynamics. The overall results of the coupled CFD-DEM simulations using Fe-based oxygen carriers reacting with gaseous CH4 demonstrate that chemical reactions have been successfully incorporated into the CFD-DEM approach. The simulations show a strong dependence of the fluidization performance of the fuel reactor on the density of bed material and provide important insight into selecting the right oxygen carrier for the enhanced performance.Given the high computing cost of CFD-DEM, it is necessary to develop a scaling methodology based on the principles of dynamic similarity that can be applied to expand the scope of this approach to larger CLC systems up to the industrial scale. A new scaling methodology based on the terminal velocity is proposed for spouted fluidized beds. Simulations of a laboratory-scale spouted fluidized bed are used to characterize the performance of the new scaling law in comparison with existing scaling laws in the literature. It is shown that the new model improves the accuracy of the simulation results compared to the other scaling methodologies while also providing the largest reduction in the number of particles and in turn in the computing cost.CFD-DEM simulations are conducted of the binary particle bed associated with a coal-direct CLC system consisting of coal (represented by plastic beads) and oxygen carrier particles and validated against an experimental riser-based carbon stripper. The simulation results of the particle behavior and the separation ratio of the particles are in excellent agreement with the experiment. A credible simulation of a binary particle bed is of particular importance for understanding the details of the fluidization behavior; the baseline simulation established in this work can be used as a tool for designing and optimizing the performance of such systems.The simulations conducted in this dissertation provide a strong foundation for future simulations of CD-CLC systems using solid coal as fuel, considering the additional complexities associated with the changing density and diameter of the coal particles as devolatilization and gasification process occur. A complete reacting flow simulation in the CFD-DEM framework will be crucial for the successful deployment of CD-CLC technology from the laboratory scale to pilot and industrial scale projects.


Handbook of Chemical Looping Technology

Handbook of Chemical Looping Technology

Author: Ronald W. Breault

Publisher: John Wiley & Sons

Published: 2019-01-22

Total Pages: 488

ISBN-13: 3527342028

DOWNLOAD EBOOK

This comprehensive and up-to-date handbook on this highly topical field, covering everything from new process concepts to commercial applications. Describing novel developments as well as established methods, the authors start with the evaluation of different oxygen carriers and subsequently illuminate various technological concepts for the energy conversion process. They then go on to discuss the potential for commercial applications in gaseous, coal, and fuel combustion processes in industry. The result is an invaluable source for every scientist in the field, from inorganic chemists in academia to chemical engineers in industry.


26th European Symposium on Computer Aided Process Engineering

26th European Symposium on Computer Aided Process Engineering

Author:

Publisher: Elsevier

Published: 2016-06-17

Total Pages: 2482

ISBN-13: 0444634444

DOWNLOAD EBOOK

26th European Symposium on Computer Aided Process Engineering contains the papers presented at the 26th European Society of Computer-Aided Process Engineering (ESCAPE) Event held at Portorož Slovenia, from June 12th to June 15th, 2016. Themes discussed at the conference include Process-product Synthesis, Design and Integration, Modelling, Numerical analysis, Simulation and Optimization, Process Operations and Control and Education in CAPE/PSE. Presents findings and discussions from the 26th European Society of Computer-Aided Process Engineering (ESCAPE) Event


Climate Change and Green Chemistry of CO2 Sequestration

Climate Change and Green Chemistry of CO2 Sequestration

Author: Malti Goel

Publisher: Springer Nature

Published: 2021-05-10

Total Pages: 319

ISBN-13: 9811600295

DOWNLOAD EBOOK

The book comprises state-of-the-art scientific reviews on carbon management strategies in response to climate change. It provides in-depth information on topics relating to recent advances in carbon capture technology and its reuse in value added products. It features contributions of leading scientists and technocrats on topics including climate change and carbon sequestration, lowering carbon footprint CO2 capture, low carbon imperatives in oil industry, CO2 as refrigerant in cold-chain application, carbonic anhydrase-mediated carbon sequestration and utilization, chemical looping combustion with Indian coal, CO2 conversion to chemicals, algae based biofuels, and carbon capture patent landscaping analysis. The contents of this book will be helpful for research scholars, post-graduate students, industry, agricultural scientists and policy makers/planners.