The volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modeling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails - that is, extreme values can occur from time to time - Andrew Harvey's new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility. The more general class of Dynamic Conditional Score models extends to robust modeling of outliers in the levels of time series and to the treatment of time-varying relationships. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modeling.
The volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modeling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails - that is, extreme values can occur from time to time - Andrew Harvey's new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility. The more general class of Dynamic Conditional Score models extends to robust modeling of outliers in the levels of time series and to the treatment of time-varying relationships. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modeling.
Heavy tails –extreme events or values more common than expected –emerge everywhere: the economy, natural events, and social and information networks are just a few examples. Yet after decades of progress, they are still treated as mysterious, surprising, and even controversial, primarily because the necessary mathematical models and statistical methods are not widely known. This book, for the first time, provides a rigorous introduction to heavy-tailed distributions accessible to anyone who knows elementary probability. It tackles and tames the zoo of terminology for models and properties, demystifying topics such as the generalized central limit theorem and regular variation. It tracks the natural emergence of heavy-tailed distributions from a wide variety of general processes, building intuition. And it reveals the controversy surrounding heavy tails to be the result of flawed statistics, then equips readers to identify and estimate with confidence. Over 100 exercises complete this engaging package.
The Handbooks in Finance are intended to be a definitive source for comprehensive and accessible information in the field of finance. Each individual volume in the series should present an accurate self-contained survey of a sub-field of finance, suitable for use by finance and economics professors and lecturers, professional researchers, graduate students and as a teaching supplement. The goal is to have a broad group of outstanding volumes in various areas of finance. The Handbook of Heavy Tailed Distributions in Finance is the first handbook to be published in this series.This volume presents current research focusing on heavy tailed distributions in finance. The contributions cover methodological issues, i.e., probabilistic, statistical and econometric modelling under non- Gaussian assumptions, as well as the applications of the stable and other non -Gaussian models in finance and risk management.
In commemoration of the bicentennial of the birth of the “lady who gave the rose diagram to us”, this special contributed book pays a statistical tribute to Florence Nightingale. This book presents recent phenomenal developments, both in rigorous theory as well as in emerging methods, for applications in directional statistics, in 25 chapters with contributions from 65 renowned researchers from 25 countries. With the advent of modern techniques in statistical paradigms and statistical machine learning, directional statistics has become an indispensable tool. Ranging from data on circles to that on the spheres, tori and cylinders, this book includes solutions to problems on exploratory data analysis, probability distributions on manifolds, maximum entropy, directional regression analysis, spatio-directional time series, optimal inference, simulation, statistical machine learning with big data, and more, with their innovative applications to emerging real-life problems in astro-statistics, bioinformatics, crystallography, optimal transport, statistical process control, and so on.
An in-depth guide to understanding probability distributions and financial modeling for the purposes of investment management In Financial Models with Lévy Processes and Volatility Clustering, the expert author team provides a framework to model the behavior of stock returns in both a univariate and a multivariate setting, providing you with practical applications to option pricing and portfolio management. They also explain the reasons for working with non-normal distribution in financial modeling and the best methodologies for employing it. The book's framework includes the basics of probability distributions and explains the alpha-stable distribution and the tempered stable distribution. The authors also explore discrete time option pricing models, beginning with the classical normal model with volatility clustering to more recent models that consider both volatility clustering and heavy tails. Reviews the basics of probability distributions Analyzes a continuous time option pricing model (the so-called exponential Lévy model) Defines a discrete time model with volatility clustering and how to price options using Monte Carlo methods Studies two multivariate settings that are suitable to explain joint extreme events Financial Models with Lévy Processes and Volatility Clustering is a thorough guide to classical probability distribution methods and brand new methodologies for financial modeling.
This volume explores dynamic factor model specification, asymptotic and finite-sample behavior of parameter estimators, identification, frequentist and Bayesian estimation of the corresponding state space models, and applications.
This book was first published in 2004. Many observed phenomena, from the changing health of a patient to values on the stock market, are characterised by quantities that vary over time: stochastic processes are designed to study them. This book introduces practical methods of applying stochastic processes to an audience knowledgeable only in basic statistics. It covers almost all aspects of the subject and presents the theory in an easily accessible form that is highlighted by application to many examples. These examples arise from dozens of areas, from sociology through medicine to engineering. Complementing these are exercise sets making the book suited for introductory courses in stochastic processes. Software (available from www.cambridge.org) is provided for the freely available R system for the reader to apply to all the models presented.
A comprehensive and timely edition on an emerging new trend in time series Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH sets a strong foundation, in terms of distribution theory, for the linear model (regression and ANOVA), univariate time series analysis (ARMAX and GARCH), and some multivariate models associated primarily with modeling financial asset returns (copula-based structures and the discrete mixed normal and Laplace). It builds on the author's previous book, Fundamental Statistical Inference: A Computational Approach, which introduced the major concepts of statistical inference. Attention is explicitly paid to application and numeric computation, with examples of Matlab code throughout. The code offers a framework for discussion and illustration of numerics, and shows the mapping from theory to computation. The topic of time series analysis is on firm footing, with numerous textbooks and research journals dedicated to it. With respect to the subject/technology, many chapters in Linear Models and Time-Series Analysis cover firmly entrenched topics (regression and ARMA). Several others are dedicated to very modern methods, as used in empirical finance, asset pricing, risk management, and portfolio optimization, in order to address the severe change in performance of many pension funds, and changes in how fund managers work. Covers traditional time series analysis with new guidelines Provides access to cutting edge topics that are at the forefront of financial econometrics and industry Includes latest developments and topics such as financial returns data, notably also in a multivariate context Written by a leading expert in time series analysis Extensively classroom tested Includes a tutorial on SAS Supplemented with a companion website containing numerous Matlab programs Solutions to most exercises are provided in the book Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH is suitable for advanced masters students in statistics and quantitative finance, as well as doctoral students in economics and finance. It is also useful for quantitative financial practitioners in large financial institutions and smaller finance outlets.
Alternative assets such as fine art, wine, or diamonds have become popular investment vehicles in the aftermath of the global financial crisis. Correlation with classical financial markets is typically low, such that diversification benefits arise for portfolio allocation and risk management. Cryptocurrencies share many alternative asset features, but are hampered by high volatility, sluggish commercial acceptance, and regulatory uncertainties. This collection of papers addresses alternative assets and cryptocurrencies from economic, financial, statistical, and technical points of view. It gives an overview of their current state and explores their properties and prospects using innovative approaches and methodologies.