Dynamic Modeling and Global Optimal Operation of Multizone Variable Air Volume HVAC Systems [microform]

Dynamic Modeling and Global Optimal Operation of Multizone Variable Air Volume HVAC Systems [microform]

Author: Guo Rong Zheng

Publisher: National Library of Canada = Bibliothèque nationale du Canada

Published: 1997

Total Pages: 206

ISBN-13: 9780612259270

DOWNLOAD EBOOK

Energy conservation and indoor environment concerns have motivated extensive research on various aspects of control of Heating, Ventilating and Air-Conditioning (HVAC) and building systems. The study on optimal operation as well as modeling of HVAC and building systems is one of the fastest growing fields that contribute to saving energy and improving indoor environment. This thesis is devoted to the development of a comprehensive modeling and optimization methodology for global multiple-stage optimal operation of HVAC and building systems. Two different dynamic models of a multizone variable air volume (VAV) system have been developed using (i) bottom-up and (ii) top-down approaches. The models take account of the dynamic interactions between building shell, VAV system components and control systems. The models describe the dynamics of fan, air distribution system, zone(s), cooling coil and primary plant (chiller) as one multivariable nonlinear system in a way that is useful for control analysis. Using the bottom-up approach a large-scale VAV system model has been developed. This model considers the interactions between flow field and thermal field via distributed capacity and variable air density considerations. An alternate model which is computationally more efficient was developed using the top-down approach. Model reduction techniques were applied to develop a reduced-order state space model of the VAV system. Results show that predictions from the reduced order model are within 5% of those from the large scale model. Optimal control schemes are developed for the efficient operation of VAV systems. In the control scheme proposed it is necessary to compute optimal setpoint profiles for local controllers. The optimal control profiles so computed can be used as tracking signals for local controllers for moving the system states from one setpoint to another. In order to determine optimal setpoint profiles an optimization methodology for formulating and solving the multiple stage optimal operation problems has been developed. The methodology is based on the maximum principle of Pontryagin and perturbation method in order to deal with the multiple time-scale of the HVAC processes and building operating schedules. A solution methodology and the corresponding computer models have been developed for solving the multiple stage optimal operation problems. The applications of the VAV model and the multistage optimization methodology have been demonstrated by considering several practical examples. The examples include (i) a comparison of optimal strategies for constant and variable air volume systems with and without time-of-day price structure for electrical energy, (ii) a two-zone VAV heating system and (iii) a five-zone VAV cooling system. Results showing the 24-hour optimal setpoint profiles, energy cost savings and the output responses such as zone temperatures and humidity ratios are given for different building operation schedules. These applications show that the developed models and optimization methodology can be used to determine energy efficient operating strategies for VAV systems without violating the thermal comfort in buildings.


Modeling and Control in Air-conditioning Systems

Modeling and Control in Air-conditioning Systems

Author: Ye Yao

Publisher: Springer

Published: 2016-10-01

Total Pages: 496

ISBN-13: 3662533138

DOWNLOAD EBOOK

This book investigates the latest modeling and control technologies in the context of air-conditioning systems. Firstly, it introduces the state-space method for developing dynamic models of all components in a central air-conditioning system. The models are primarily nonlinear and based on the fundamental principle of energy and mass conservation, and are transformed into state-space form through linearization. The book goes on to describe and discuss the state-space models with the help of graph theory and the structure-matrix theory. Subsequently, virtual sensor calibration and virtual sensing methods (which are very useful for real system control) are illustrated together with a case study. Model-based predictive control and state-space feedback control are applied to air-conditioning systems to yield better local control, while the air-side synergic control scheme and a global optimization strategy based on the decomposition-coordination method are developed so as to achieve energy conservation in the central air-conditioning system. Lastly, control strategies for VAV systems including total air volume control and trim & response static pressure control are investigated in practice.


Advanced Analytic and Control Techniques for Thermal Systems with Heat Exchangers

Advanced Analytic and Control Techniques for Thermal Systems with Heat Exchangers

Author: Libor Pekar

Publisher: Academic Press

Published: 2020-07-10

Total Pages: 522

ISBN-13: 0128194235

DOWNLOAD EBOOK

Advanced Analytic Control Techniques for Thermal Systems with Heat Exchangers presents the latest research on sophisticated analytic and control techniques specific for Heat Exchangers (HXs) and heat Exchanger Networks (HXNs), such as Stability Analysis, Efficiency of HXs, Fouling Effect, Delay Phenomenon, Robust Control, Algebraic Control, Geometric Control, Optimal Control, Fuzzy Control and Artificial Intelligence techniques. Editor Libor Pekar and his team of global expert contributors combine their knowledge and experience of investigated and applied systems and processes in this thorough review of the most advanced networks, analyzing their dynamics, efficiency, transient features, physical properties, performance, feasibility, flexibility and controllability. The structural and dynamic analyses and control approaches of HXNs, as well as energy efficient manipulation techniques are discussed, in addition to the design of the control systems through the full life cycle. This equips the reader with an understanding of the relevant theory in a variety of settings and scenarios and the confidence to apply that knowledge to solve problems in an academic or professional setting.Graduate students and early-mid career professionals require a robust understanding of how to suitably design thermal systems with HXs and HXNs to achieve required performance levels, which this book offers in one consolidated reference. All examples and solved problems included have been tried and tested, and these combined with the research driven theory provides professionals, researchers and students with the most recent techniques to maximize the energy efficiency and sustainability of existing and new thermal power systems. Analyses several advanced techniques, the theoretical background of these techniques and includes models, examples and results throughout Focusses on advanced analytic and control techniques which have been investigated or applied to thermal systems with HXs and HXNs Includes practical applications and advanced ideas from leading experts in the field, as well as case studies and tested problems and solutions


Dynamic Modeling, Simulation and Control of Energy Generation

Dynamic Modeling, Simulation and Control of Energy Generation

Author: Ranjan Vepa

Publisher: Springer Science & Business Media

Published: 2013-09-11

Total Pages: 384

ISBN-13: 1447154002

DOWNLOAD EBOOK

This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy. A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their applications in the field of energy generation, its control and regulation. This book will help the reader understand the methods of modelling energy systems for controller design application as well as gain a basic understanding of the processes involved in the design of control systems and regulators. It will also be a useful guide to simulation of the dynamics of energy systems and for implementing monitoring systems based on the estimation of internal system variables from measurements of observable system variables. Dynamic Modeling, Simulation and Control of Energy Generation will serve as a useful aid to designers of hybrid power generating systems involving advanced technology systems such as floating or offshore wind turbines and fuel cells. The book introduces case studies of the practical control laws for a variety of energy generation systems based on nonlinear dynamic models without relying on linearization. Also the book introduces the reader to the use nonlinear model based estimation techniques and their application to energy systems.


Dynamic Modeling and Control of Hybrid Ground Source Heat Pump Systems

Dynamic Modeling and Control of Hybrid Ground Source Heat Pump Systems

Author: Chang Chen

Publisher:

Published: 2008

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Ground source heat pump (GSHP) systems are one of the fastest growing applications of renewable energy in the world with annual increases of 10% over the past decade. GSHPs are potentially more efficient than conventional air-to-air heat pumps as they use the relatively constant temperature of the geothermal energy to provide heating or cooling to conditioned rooms at desired temperature and relative humidity. More importantly, GSHP systems can in fact achieve significant energy savings year round, compared to conventional HVAC systems. A hybrid ground source heat pump (HGSHP) system is designed in this study to heat and cool an office building all the year round. Dynamic models of each component of the heat pump system are developed for simulations of heat transfer between each component of the HGSHP system and for control strategy design and analysis. A detailed multiple-load aggregation algorithm (MLAA) is adapted from the literature to precisely account for and calculate the transient heat conduction in vertical ground heat exchangers with different yearly, monthly, and daily pulses of heat. Feedback PI controllers for heat pump units and On/Off controllers for boiler and cooling tower are designed and utilized to match anticipated building loads and to analyze transient response characteristics of such outputs as water flow rate and air flow rate of heat pumps, return water temperature and supply air temperature of heat pumps, water temperatures of ground loops and heat exchangers, water temperature of boiler or cooling tower, and fuel flow rate of boiler. Control strategies for the HGSHP system in both heating and cooling modes of operation are also introduced to study the system responses. With the usage of On/Off controllers and well-tuned PI controllers, as well as optimal control strategies for heating and cooling operations, the HGSHP system is expected to give better operating performance and efficiency. As a result, noticeable energy savings can be achieved in both heating and cooling modes of operation.


Automotive Air Conditioning

Automotive Air Conditioning

Author: Quansheng Zhang

Publisher: Springer

Published: 2016-08-10

Total Pages: 361

ISBN-13: 3319335901

DOWNLOAD EBOOK

This book presents research advances in automotive AC systems using an interdisciplinary approach combining both thermal science, and automotive engineering. It covers a variety of topics, such as: control strategies, optimization algorithms, and diagnosis schemes developed for when automotive air condition systems interact with powertrain dynamics. In contrast to the rapid advances in the fields of building HVAC and automotive separately, an interdisciplinary examination of both areas has long been neglected. The content presented in this book not only reveals opportunities when interaction between on-board HVAC and powertrain is considered, but also provides new findings to achieve performance improvement using model-based methodologies.


Heating and Cooling of Buildings

Heating and Cooling of Buildings

Author: T. Reddy

Publisher: CRC Press

Published: 2016-09-01

Total Pages: 898

ISBN-13: 1315362910

DOWNLOAD EBOOK

Follows a strict pedagogical structure and content sequence tested over fifteen years of teaching. Starts by coverings the most up-to-date calculation procedures and standards from ASHRAE and other organizations relevant to building loads, then provides a detailed treatment of primary, traditional secondary and hybrid/emerging secondary equipment and systems. Addresses contemporary issues such as emerging green building design technologies, alternative energy sources, and uncertainties in simulation. Discusses drivers for efficiency such as codes and standards, building rating systems, design guides, and the green building movement Offers a complete Solutions Manual, chapter outcomes, free HCB software download along with associated resources, and detailed and tested slides of individual chapters for classroom projection for qualified instructors adopting the text, with access through author's website