A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material
A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material
• New York Times bestseller • The 100 most substantive solutions to reverse global warming, based on meticulous research by leading scientists and policymakers around the world “At this point in time, the Drawdown book is exactly what is needed; a credible, conservative solution-by-solution narrative that we can do it. Reading it is an effective inoculation against the widespread perception of doom that humanity cannot and will not solve the climate crisis. Reported by-effects include increased determination and a sense of grounded hope.” —Per Espen Stoknes, Author, What We Think About When We Try Not To Think About Global Warming “There’s been no real way for ordinary people to get an understanding of what they can do and what impact it can have. There remains no single, comprehensive, reliable compendium of carbon-reduction solutions across sectors. At least until now. . . . The public is hungry for this kind of practical wisdom.” —David Roberts, Vox “This is the ideal environmental sciences textbook—only it is too interesting and inspiring to be called a textbook.” —Peter Kareiva, Director of the Institute of the Environment and Sustainability, UCLA In the face of widespread fear and apathy, an international coalition of researchers, professionals, and scientists have come together to offer a set of realistic and bold solutions to climate change. One hundred techniques and practices are described here—some are well known; some you may have never heard of. They range from clean energy to educating girls in lower-income countries to land use practices that pull carbon out of the air. The solutions exist, are economically viable, and communities throughout the world are currently enacting them with skill and determination. If deployed collectively on a global scale over the next thirty years, they represent a credible path forward, not just to slow the earth’s warming but to reach drawdown, that point in time when greenhouse gases in the atmosphere peak and begin to decline. These measures promise cascading benefits to human health, security, prosperity, and well-being—giving us every reason to see this planetary crisis as an opportunity to create a just and livable world.
Dive into the future of automotive engineering with our latest book, Electric Vehicles: Theory and Design. As the world shifts towards sustainable mobility, this indispensable guide offers a deep dive into the cutting-edge world of electric vehicles (EVs). Authored by an industry expert with a background in combustion engineering, this book bridges the gap between traditional automotive knowledge and the electrified future. From the basics of EV theory to advanced design principles, this book covers every aspect of EV engineering. Whether you're an experienced EV engineer or just entering the field, you'll find invaluable insights, technical requirements, and practical recommendations to navigate the complex world of EV engineering.Forget outdated references – this book delivers up-to-date information on EVs and their essential components, including cutting-edge battery systems, propulsion technology, and intelligent subsystems. Plus, explore the latest trends in electrification, autonomous driving, connectivity, and shared mobility, and stay ahead of the curve in this rapidly evolving industry. Perfect for automotive professionals, students, and scholars, this book serves as your roadmap to success in the electric vehicle revolution. Don't miss out – grab your copy today and become an expert in shaping the future of sustainable mobility! (ISBN 9781468607734, ISBN 9781468607741, ISBN 9781468607758, DOI https://doi.org/10.4271/9781468607741)
Power Converters for Electric Vehicles gives an overview, topology, design, and simulation of different types of converters used in electric vehicles (EV). It covers a wide range of topics ranging from the fundamentals of EV, Hybrid EV and its stepwise approach, simulation of the proposed converters for real-time applications and corresponding experimental results, performance improvement paradigms, and overall analysis. Drawing upon the need for novel converter topologies, this book provides the complete solution for the power converters for EV applications along with simulation exercises and experimental results. It explains the need for power electronics in the improvement of performance in EV. This book: Presents exclusive information on the power electronics of EV including traction drives. Provides step-by-step procedure for converter design. Discusses various topologies having different isolated and non-isolated converters. Describes control circuit design including renewable energy systems and electrical drives. Includes practical case studies incorporated with simulation and experimental results. Power Converters for Electric Vehicles will provide researchers and graduate students in Power Electronics, Electric Drives, Vehicle Engineering a useful resource for stimulating their efforts in this important field of the search for renewable technologies.
Considerable work has gone into electric car and battery development in the last ten years, with the prospect of substantial improvements in range and performance in battery cars as well as in hybrids and those using fuel cells. This book covers the development of electric cars, from their early days, to new hybrid models in production. Most of the coverage is focused on the very latest technological issues faced by automotive engineers working on electric cars, as well as the key business factors vital for the successful transfer of electric cars into the mass market.
Plug-in electric vehicles are coming. Major automakers plan to commercialize their first models soon, while Israel and Denmark have ambitious plans to electrify large portions of their vehicle fleets. No technology has greater potential to end the United States' crippling dependence on oil, which leaves the nation vulnerable to price shocks, supply disruptions, environmental degradation, and national security threats including terrorism. What does the future hold for this critical technology, and what should the U.S. government do to promote it? Hybrid vehicles now number more than one million on America's roads, and they are in high demand from consumers. The next major technological step is the plug-in electric vehicle. It combines an internal combustion engine and electric motor, just as hybrids do. But unlike their precursors, PEVs can be recharged from standard electric outlets, meaning the vehicles would no longer be dependent on oil. Widespread growth in the use of PEVs would dramatically reduce oil dependence, cut driving costs and reduce pollution from vehicles. National security would be enhanced, as reduced oil dependence decreases the leverage and resources of petroleum exporters. Brookings fellow David Sandalow heads up an authoritative team of experts including former government officials, private-sector analysts, academic experts, and nongovernmental advocates. Together they explain the current landscape for PEVs: the technology, the economics, and the implications for national security and the environment. They examine how the national interest could be served by federal promotion and investment in PEVs. For example, can tax or procurement policy advance the cause of PEVs? Should the public sector contribute to greater research and development? Should the government insist on PEVs to replenish its huge fleet of official vehicles? Plug-in electric vehicles are coming. But how soon, in what numbers, and to what effect? Feder
The 2014 Asia-Pacific Electronics and Electrical Engineering Conference (EEEC 2014) was held on December 27-28, 2014 in Shanghai, China. EEEC has provided a platform for researchers, engineers, academicians as well as industrial professionals from all over the world to present their research results and development activities in Electroni