THE AIR & WASTE MANAGEMENT ASSOCIATION is the world's leading membership organization for environmental professionals. The Association enhances the knowledge and competency of environmental professionals by providing a neutral forum for technology exchange, professional development, networking opportunities, public education, and outreach events. The Air & Waste Management Association promotes global environmental responsibility and increases the effectiveness of organizations and individuals in making critical decisions that benefit society.
The Manual of Engineering Drawing has long been recognised as the student and practising engineer's guide to producing engineering drawings that comply with ISO and British Standards. The information in this book is equally applicable to any CAD application or manual drawing. The second edition is fully in line with the requirements of the new British Standard BS8888: 2002, and will help engineers, lecturers and students with the transition to the new standards.BS8888 is fully based on the relevant ISO standards, so this book is also ideal for an international readership. The comprehensive scope of this book encompasses topics including orthographic, isometric and oblique projections, electric and hydraulic diagrams, welding and adhesive symbols, and guidance on tolerancing.Written by a member of the ISO committee and a former college lecturer, the Manual of Engineering Drawing combines up-to-the-minute technical accuracy with clear, readable explanations and numerous diagrams. This approach makes this an ideal student text for vocational courses in engineering drawing and undergraduates studying engineering design / product design.Colin Simmons is a member of the BSI and ISO Draughting Committees and an Engineering Standards Consultant. He was formerly Standards Engineer at Lucas CAV.* Fully in line with the latest ISO Standards* A textbook and reference guide for students and engineers involved in design engineering and product design* Written by a former lecturer and a current member of the relevant standards committees
Physiological and Biotechnological Aspects of Extremophiles highlights the current and topical areas of research in this rapidly growing field. Expert authors from around the world provide the latest insights into the mechanisms of these fascinating organisms use to survive.The vast majority of extremophiles are microbes which include archaea, bacteria and some eukaryotes. These microbes live under chemical and physical extremes that are usually lethal to cellular molecules, yet they manage to survive and even thrive. Extremophiles have important practical uses. They are a valuable source of industrially important enzymes and recent research has revealed novel mechanisms and biomolecular structures with a broad range of potential applications in biotechnology, biomining, and bioremediation.Aimed at research scientists, students, microbiologists, and biotechnologists, this book is an essential reading for scientists working with extremophiles and a recommended reference text for anyone interested in the microbiology, bioprospecting, biomining, biofuels, and extremozymes of these organisms. - Shows the implications of the physiological adaptations of microbes from extreme habitats that are largely contributed by their biomolecules from basic to applied research - Provides in-depth knowledge of genomic plasticity and proteome of different extremophiles - Gives detailed and comprehensive insight about use of genetic engineering as well as genome editing for industrial applications
Comprehensive and practical guide to the selection and design of a wide range of chemical process equipment. Emphasis is placed on real-world process design and performance of equipment. Provides examples of successful applications, with numerous drawings, graphs, and tables to show the functioning and performance of the equipment. Equipment rating forms and manufacturers' questionnaires are collected to illustrate the data essential to process design. Includes a chapter on equipment cost and addresses economic concerns. - Practical guide to the selection and design of a wide range of chemical process equipment. Examples of successful, real-world applications are provided - Fully revised and updated with valuable shortcut methods, rules of thumb, and equipment rating forms and manufacturers' questionnaires have been collected to demonstrate the design process. Many line drawings, graphs, and tables illustrate performance data - Chapter 19 has been expanded to cover new information on membrane separation. Approximately 100 worked examples are included. End of chapter references also are provided
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This book highlights the efforts made by distinguished scientific researchers world-wide to meet two key challenges: i) the limited reserves of polluting fossil fuels, and ii) the ever-increasing amounts of waste being generated. These case studies have brought to the foreground certain innovative biological solutions to real-life problems we now face on a global scale: environmental pollution and its role in deteriorating human health. The book also highlights major advances in microbial metabolisms, which can be used to produce bioenergy, biopolymers, bioactive molecules, enzymes, etc. Around the world, countries like China, Germany, France, Sweden and the US are now implementing major national programs for the production of biofuels. The book provides information on how to meet the chief technical challenges – identifying an industrially robust microbe and cheap raw material as feed. Of the various possibilities for generating bioenergy, the most attractive is the microbial production of biohydrogen, which has recently gained significant recognition worldwide, due to its high efficiency and eco-friendly nature. Further, the book highlights factors that can make these bioprocesses more economical, especially the cost of the feed. The anaerobic digestion (AD) process is more advantageous in comparison to aerobic processes for stabilizing biowastes and producing biofuels (hydrogen, biodiesel, 1,3-propanediol, methane, electricity), biopolymers (polyhydroxyalkanoates, cellulose, exopolysaccharides) and bioactive molecules (such as enzymes, volatile fatty acids, sugars, toxins, etc.) for biotechnological and medical applications. Information is provided on how the advent of molecular biological techniques can provide greater insights into novel microbial lineages. Bioinformatic tools and metagenomic techniques have extended the limits to which these biological processes can be exploited to improve human welfare. A new dimension to these scientific works has been added by the emergence of synthetic biology. The Big Question is: How can these Microbial Factories be improved through metabolic engineering and what cost targets need to be met?