Double Affine Hecke Algebras

Double Affine Hecke Algebras

Author: Ivan Cherednik

Publisher: Cambridge University Press

Published: 2005-03-21

Total Pages: 449

ISBN-13: 0521609186

DOWNLOAD EBOOK

This is an essentially self-contained monograph centered on the new double Hecke algebra technique.


Double Affine Hecke Algebras

Double Affine Hecke Algebras

Author: Ivan Cherednik

Publisher: Cambridge University Press

Published: 2005-03-24

Total Pages: 452

ISBN-13: 9781139441254

DOWNLOAD EBOOK

This is an essentially self-contained monograph in an intriguing field of fundamental importance for Representation Theory, Harmonic Analysis, Mathematical Physics, and Combinatorics. It is a major source of general information about the double affine Hecke algebra, also called Cherednik's algebra, and its impressive applications. Chapter 1 is devoted to the Knizhnik-Zamolodchikov equations attached to root systems and their relations to affine Hecke algebras, Kac-Moody algebras, and Fourier analysis. Chapter 2 contains a systematic exposition of the representation theory of the one-dimensional DAHA. It is the simplest case but far from trivial with deep connections in the theory of special functions. Chapter 3 is about DAHA in full generality, including applications to Macdonald polynomials, Fourier transforms, Gauss-Selberg integrals, Verlinde algebras, and Gaussian sums. This book is designed for mathematicians and physicists, experts and students, for those who want to master the double Hecke algebra technique. Visit http://arxiv.org/math.QA/0404307 to read Chapter 0 and selected topics from other chapters.


Affine Hecke Algebras and Orthogonal Polynomials

Affine Hecke Algebras and Orthogonal Polynomials

Author: I. G. Macdonald

Publisher: Cambridge University Press

Published: 2003-03-20

Total Pages: 200

ISBN-13: 9780521824729

DOWNLOAD EBOOK

First account of a theory, created by Macdonald, of a class of orthogonal polynomial, which is related to mathematical physics.


Double Affine Hecke Algebras and Congruence Groups

Double Affine Hecke Algebras and Congruence Groups

Author: Bogdan Ion

Publisher: American Mathematical Soc.

Published: 2021-06-18

Total Pages: 90

ISBN-13: 1470443260

DOWNLOAD EBOOK

The most general construction of double affine Artin groups (DAAG) and Hecke algebras (DAHA) associates such objects to pairs of compatible reductive group data. We show that DAAG/DAHA always admit a faithful action by auto-morphisms of a finite index subgroup of the Artin group of type A2, which descends to a faithful outer action of a congruence subgroup of SL(2, Z)or PSL(2, Z). This was previously known only in some special cases and, to the best of our knowledge, not even conjectured to hold in full generality. It turns out that the structural intricacies of DAAG/DAHA are captured by the underlying semisimple data and, to a large extent, even by adjoint data; we prove our main result by reduction to the adjoint case. Adjoint DAAG/DAHA correspond in a natural way to affine Lie algebras, or more precisely to their affinized Weyl groups, which are the semi-direct products W 􀀁 Q∨ of the Weyl group W with the coroot lattice Q∨. They were defined topologically by van der Lek, and independently, algebraically, by Cherednik. We now describe our results for the adjoint case in greater detail. We first give a new Coxeter-type presentation for adjoint DAAG as quotients of the Coxeter braid groups associated to certain crystallographic diagrams that we call double affine Coxeter diagrams. As a consequence we show that the rank two Artin groups of type A2,B2,G2 act by automorphisms on the adjoint DAAG/DAHA associated to affine Lie algebras of twist number r =1, 2, 3, respec-tively. This extends a fundamental result of Cherednik for r =1. We show further that the above rank two Artin group action descends to an outer action of the congruence subgroup Γ1(r). In particular, Γ1(r) acts naturally on the set of isomorphism classes of representations of an adjoint DAAG/DAHA of twist number r, giving rise to a projective representation of Γ1(r)on the spaceof aΓ1(r)-stable representation. We also provide a classification of the involutions of Kazhdan-Lusztig type that appear in the context of these actions.


Lie Groups, Geometry, and Representation Theory

Lie Groups, Geometry, and Representation Theory

Author: Victor G. Kac

Publisher: Springer

Published: 2018-12-12

Total Pages: 545

ISBN-13: 3030021912

DOWNLOAD EBOOK

This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil-Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of θ-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.-P. Serre)


Calogero-Moser Systems and Representation Theory

Calogero-Moser Systems and Representation Theory

Author: Pavel I. Etingof

Publisher: European Mathematical Society

Published: 2007

Total Pages: 108

ISBN-13: 9783037190340

DOWNLOAD EBOOK

Calogero-Moser systems, which were originally discovered by specialists in integrable systems, are currently at the crossroads of many areas of mathematics and within the scope of interests of many mathematicians. More specifically, these systems and their generalizations turned out to have intrinsic connections with such fields as algebraic geometry (Hilbert schemes of surfaces), representation theory (double affine Hecke algebras, Lie groups, quantum groups), deformation theory (symplectic reflection algebras), homological algebra (Koszul algebras), Poisson geometry, etc. The goal of the present lecture notes is to give an introduction to the theory of Calogero-Moser systems, highlighting their interplay with these fields. Since these lectures are designed for non-experts, the author gives short introductions to each of the subjects involved and provides a number of exercises.


Iwahori-Hecke Algebras and Their Representation Theory

Iwahori-Hecke Algebras and Their Representation Theory

Author: Ivan Cherednik

Publisher: Springer Science & Business Media

Published: 2002-12-19

Total Pages: 132

ISBN-13: 9783540002246

DOWNLOAD EBOOK

Two basic problems of representation theory are to classify irreducible representations and decompose representations occuring naturally in some other context. Algebras of Iwahori-Hecke type are one of the tools and were, probably, first considered in the context of representation theory of finite groups of Lie type. This volume consists of notes of the courses on Iwahori-Hecke algebras and their representation theory, given during the CIME summer school which took place in 1999 in Martina Franca, Italy.


Topological Field Theory, Primitive Forms and Related Topics

Topological Field Theory, Primitive Forms and Related Topics

Author: A. Kashiwara

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 492

ISBN-13: 1461207053

DOWNLOAD EBOOK

As the interaction of mathematics and theoretical physics continues to intensify, the theories developed in mathematics are being applied to physics, and conversely. This book centers around the theory of primitive forms which currently plays an active and key role in topological field theory (theoretical physics), but was originally developed as a mathematical notion to define a "good period mapping" for a family of analytic structures. The invited papers in this volume are expository in nature by participants of the Taniguchi Symposium on "Topological Field Theory, Primitive Forms and Related Topics" and the RIMS Symposium bearing the same title, both held in Kyoto. The papers reflect the broad research of some of the world's leading mathematical physicists, and should serve as an excellent resource for researchers as well as graduate students of both disciplines.


Lie Algebras of Finite and Affine Type

Lie Algebras of Finite and Affine Type

Author: Roger William Carter

Publisher: Cambridge University Press

Published: 2005-10-27

Total Pages: 662

ISBN-13: 9780521851381

DOWNLOAD EBOOK

This book provides a thorough but relaxed mathematical treatment of Lie algebras.


Representation Theory of Algebraic Groups and Quantum Groups

Representation Theory of Algebraic Groups and Quantum Groups

Author: Akihiko Gyoja

Publisher: Springer Science & Business Media

Published: 2010-11-25

Total Pages: 356

ISBN-13: 0817646973

DOWNLOAD EBOOK

Invited articles by top notch experts Focus is on topics in representation theory of algebraic groups and quantum groups Of interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics