This proceedings volume presents the talks from the Fifth Annual Meeting on DNA Based Computers held at MIT. The conference brought together researchers and theorists from many disciplines who shared research results in biomolecular computation. Two styles of DNA computing were explored at the conference: 1) DNA computing based on combinatorial search, where randomly created DNA strands are used to encode potential solutions to a problem, and constraints induced by the problem are used to identify DNA strands that are solution witnesses; and 2) DNA computing based on finite-state machines, where the state of a computation is encoded in DNA, which controls the biochemical steps that advance the DNA-based machine from state to state. Featured articles include discussions on the formula satisfiability problem, self-assembly and nanomachines, simulation and design of molecular systems, and new theoretical approaches.
Molecular computing is a rapidly growing subarea of natural computing. On the one hand, molecular computing is concerned with the use of bio-molecules for the purpose of actual computations while, on the other hand, it attempts to understand the computational nature of molecular processes going on in living cells. The book presents a unique and authorative state-of-the-art survey on current research in molecular computing: 30 papers by leading researchers in the area are drawn together on the occasion of the 70th birthday of Tom Head, a pioneer in molecular computing. Among the topics addressed are molecular tiling, DNA self-assembly, splicing systems, DNA-based cryptography, DNA word design, gene assembly, and membrane computing.
Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.
This book constitutes the thoroughly refereed post-proceedings of the 7th International Workshop on DNA-Based Computers, DNA7, held in Tampa, Florida, USA, in June 2001. The 26 revised full papers presented together with 9 poster papers were carefully reviewed and selected from 44 submissions. The papers are organized in topical sections on experimental tools, theoretical tools, probabilistic computational models, computer simulation and sequence design, algorithms, experimental solutions, nano-tech devices, biomimetic tools, new computing models, and splicing systems and membranes.
This book constitutes the refereed proceedings of the 9th International Conference on High Performance Computing, HiPC 2002, held in Bangalore, India in December 2002. The 57 revised full contributed papers and 9 invited papers presented together with various keynote abstracts were carefully reviewed and selected from 145 submissions. The papers are organized in topical sections on algorithms, architecture, systems software, networks, mobile computing and databases, applications, scientific computation, embedded systems, and biocomputing.
The papers in this volume were presented at the 6th International Meeting on DNA Based Computers, organized by the Leiden Center for Natural Computing and held from June 13 to June 17, 2000 at The Lorentz Center, University of Leiden, Leiden, The Netherlands. DNA Computing is a novel and fascinating development at the interface of computer science and molecular biology. It has emerged in recent years, not simply as an exciting technology for information processing, but also as a catalyst for knowledge transfer between information processing, nanotechnology, and biology. This area of research has the potential to change our understanding of the theory and practice of computing. The call for papers and poster presentations sought contributions of original research and technical expositions in all areas of bio-computation. A total of 33 abstracts were submitted of which 16 were accepted for presentation and included in the proceedings. The papers were selected by the program committee based on originality and quality of research and on relevance to the bio-computing eld. Invited talks were given by Masami Hagiya (Tokyo University), Laura La- weber (Princeton University), John Reif (Duke University), Thomas Schmidt (Leiden University), and Lloyd M. Smith (University of Wisconsin). Invited - pers based on the talks by Hagiya and Reif are included in this volume, along with the contributed papers. Additional tutorials were held on the rst and last days of the conference.
Biomolecular computing has emerged as an interdisciplinary ?eld that draws - gether chemistry, computer science, mathematics, molecular biology, and physics. Our knowledge on DNA nanotechnology and biomolecular computing increases exponentially with every passing year. The international meeting on DNA Based Computers has been a forum where scientists with di?erent backgrounds, yet sharing a common interest in biomolecular computing, meet and present their latest results. Continuing this tradition, the 8th International Meeting on DNA Based Computers (DNA8) focuses on the current theoretical and experimental results with the greatest impact. Papers and poster presentations were sought in all areas that relate to b- molecular computing, including (but not restricted to): algorithms and appli- tions, analysis of laboratory techniques/theoretical models, computational p- cesses in vitro and in vivo, DNA-computing-based biotechnological applications, DNA devices, error evaluation and correction, in vitro evolution, models of biomolecular computing (using DNA and/or other molecules), molecular - sign, nucleic acid chemistry, and simulation tools. Papers and posters with new experimental results were particularly encouraged. Authors who wished their work to be considered for either oral or poster presentation were asked to select from one of two submission “tracks”: – Track A - Full Paper – Track B - One-Page Abstract For authors with late-breaking results, or who were submitting their manuscript to a scienti?c journal, a one-page abstract, rather than a full paper, could be submitted in Track B. Authors could (optionally) include a preprint of their full paper, for consideration only by the program committee.
NanoBiotechnology is a groundbreaking text investigating the recent advances and future direction of nanobiotechnology. It will assist scientists and students in learning the fundamentals and cutting-edge nature of this new and emerging science. Focusing on materials and building blocks for nanotechnology, leading scientists from around the world share their knowledge and expertise in this authoritative volume.
Natural computing brings together nature and computing to develop new computational tools for problem solving; to synthesize natural patterns and behaviors in computers; and to potentially design novel types of computers. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications presents a wide-ranging survey of novel techniqu
Internet usage has become a facet of everyday life, especially as more technological advances have made it easier to connect to the web from virtually anywhere in the developed world. However, with this increased usage comes heightened threats to security within digital environments. The Handbook of Research on Modern Cryptographic Solutions for Computer and Cyber Security identifies emergent research and techniques being utilized in the field of cryptology and cyber threat prevention. Featuring theoretical perspectives, best practices, and future research directions, this handbook of research is a vital resource for professionals, researchers, faculty members, scientists, graduate students, scholars, and software developers interested in threat identification and prevention.