This book is an investigation into processes associated with evolutionary divergence and diversification, focussing on the role played by the exchange of genes between divergent lineages.
The study of genetic exchange resulting from natural hybridization, horizontal gene transfer, and viral recombination has long been marked by controversy between researchers holding different conceptual frameworks. Those subscribing to a doctrine of 'species purity' have traditionally been reluctant to recognise inferences suggesting anything other than a marginal role for non-allopatric divergence leading to gene transfer between different lineages. However, an increasing number of evolutionary biologists now accept that there is a growing body of evidence indicating the existence of non-allopatric diversification across many lineages and all domains of biological diversity. Divergence with Genetic Exchange investigates the mechanisms associated with evolutionary divergence and diversification, focussing on the role played by the exchange of genes between divergent lineages, a process recently termed 'divergence-with-gene-flow'. Although the mechanisms by which such divergent forms of life exchange genomic material may differ widely, the outcomes of interest - adaptive evolution and the formation of new hybrid lineages - do not. Successive chapters cover the history of the field, detection methodologies, outcomes, implications for conservation programs, and the effects on the human lineage associated with the process of genetic transfer between divergent lineages. This research level text is suitable for senior undergraduate and graduate level students taking related courses in departments of genetics, ecology and evolution. It will also be of relevance and use to professional evolutionary biologists and systematists seeking a comprehensive and authoritative overview of this rapidly expanding field.
The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.
Michael L. Arnold offers an exploration of the evolutionary process of natural hybridisation, and presents data from various sources that support the paradigm of natural hybridisation as an important evolutionary process.
Genetic studies aimed at understanding the origin of species are dominating major scientific journals. In the past decade, genetic tools that were previously available only in model systems have become accessible to investigators working on nearly all species. Concurrent with these technical advances has been an increase in understanding of both the importance of considering the ecological context of speciation and testing hypotheses about causes for species formation. Many recent studies suggest a prominent role of sexual selection in species formation. These advances have produced a need for a synthesis of what we now understand about speciation, and perhaps more importantly, where we should go from here. In this volume, several leading investigators and rising stars have contributed reviews and/or novel primary research findings aimed at understanding the ultimate mystery on which Darwin named his most famous and influential book. Fundamental to the origin of species is the evolution of mate choice systems. This collection of papers discusses burgeoning genetic, evolutionary, and ecological approaches to understanding the origins of mating discrimination and causes of premating reproductive isolation both within and between species. The individual contributions span a wide spectrum of disciplines, taxa, and ideas (some controversial). This synthesis brings together several of the most recent ideas with supporting empirical data. This book will be of particular interest to both undergraduate and postgraduate researchers and students and researchers in the field of evolutionary biology, genetics and animal behaviour.
This open access book offers the first comprehensive account of the pan-genome concept and its manifold implications. The realization that the genetic repertoire of a biological species always encompasses more than the genome of each individual is one of the earliest examples of big data in biology that opened biology to the unbounded. The study of genetic variation observed within a species challenges existing views and has profound consequences for our understanding of the fundamental mechanisms underpinning bacterial biology and evolution. The underlying rationale extends well beyond the initial prokaryotic focus to all kingdoms of life and evolves into similar concepts for metagenomes, phenomes and epigenomes. The book’s respective chapters address a range of topics, from the serendipitous emergence of the pan-genome concept and its impacts on the fields of microbiology, vaccinology and antimicrobial resistance, to the study of microbial communities, bioinformatic applications and mathematical models that tie in with complex systems and economic theory. Given its scope, the book will appeal to a broad readership interested in population dynamics, evolutionary biology and genomics.
Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.
With the appearance of methods for the sequencing of genomes and less expensive next generation sequencing methods, we face rapid advancements of the -omics technologies and plant biology studies: reverse and forward genetics, functional genomics, transcriptomics, proteomics, metabolomics, the movement at distance of effectors and structural biology. From plant genomics to plant biotechnology reviews the recent advancements in the post-genomic era, discussing how different varieties respond to abiotic and biotic stresses, understanding the epigenetic control and epigenetic memory, the roles of non-coding RNAs, applicative uses of RNA silencing and RNA interference in plant physiology and in experimental transgenics and plants modified to specific aims. In the forthcoming years these advancements will support the production of plant varieties better suited to resist biotic and abiotic stresses, for food and non-food applications.This book covers these issues, showing how such technologies are influencing the plant field in sectors such as the selection of plant varieties and plant breeding, selection of optimum agronomic traits, stress-resistant varieties, improvement of plant fitness, improving crop yield, and non-food applications in the knowledge based bio-economy. - Discusses a broad range of applications: the examples originate from a variety of sectors (including in field studies, breeding, RNA regulation, pharmaceuticals and biotech) and a variety of scientific areas (such as bioinformatics, -omics sciences, epigenetics, and the agro-industry) - Provides a unique perspective on work normally performed 'behind closed doors'. As such, it presents an opportunity for those within the field to learn from each other, and for those on the 'outside' to see how different groups have approached key problems - Highlights the criteria used to compare and assess different approaches to solving problems. Shows the thinking process, practical limitations and any other considerations, aiding in the understanding of a deeper approach
Microsatellites are short stretches of repeated DNA, found in most genomes, that show exceptional variability in humans and most other species. This variability has made microsatellites the genetic marker of choice for most applications, including genetic mapping and studies of the evolutionary connections between species and populations. This book brings together an international group of scientists currently working in microsatellites. Their contributions provide a detailed descriptionof microsatellite biology, focusing on their mutation properties, generation, decay, and possible functional roles. They introduce the theoretical models that underpin the most popular methods for analysing the information that microsatellites can yield, including methods for estimating coalescent times, population divergences, and migration. Finally, the book describes the various ways in which the potential of microsatellites is being harnessed in a range of applications including medical genetics, forensics, genetic mapping, the analysis of human evolution, and conservation genetics.