Discrete Subgroups of Lie Groups

Discrete Subgroups of Lie Groups

Author: Madabusi S. Raghunathan

Publisher: Springer

Published: 2012-11-09

Total Pages: 0

ISBN-13: 9783642864285

DOWNLOAD EBOOK

This book originated from a course of lectures given at Yale University during 1968-69 and a more elaborate one, the next year, at the Tata Institute of Fundamental Research. Its aim is to present a detailed ac count of some of the recent work on the geometric aspects of the theory of discrete subgroups of Lie groups. Our interest, by and large, is in a special class of discrete subgroups of Lie groups, viz., lattices (by a lattice in a locally compact group G, we mean a discrete subgroup H such that the homogeneous space GJ H carries a finite G-invariant measure). It is assumed that the reader has considerable familiarity with Lie groups and algebraic groups. However most of the results used frequently in the book are summarised in "Preliminaries"; this chapter, it is hoped, will be useful as a reference. We now briefly outline the contents of the book. Chapter I deals with results of a general nature on lattices in locally compact groups. The second chapter is an account of the fairly complete study of lattices in nilpotent Lie groups carried out by Ma1cev. Chapters III and IV are devoted to lattices in solvable Lie groups; most of the theorems here are due to Mostow. In Chapter V we prove a density theorem due to Borel: this is the first important result on lattices in semisimple Lie groups.


Discrete Subgroups of Semisimple Lie Groups

Discrete Subgroups of Semisimple Lie Groups

Author: Gregori A. Margulis

Publisher: Springer Science & Business Media

Published: 1991-02-15

Total Pages: 408

ISBN-13: 9783540121794

DOWNLOAD EBOOK

Discrete subgroups have played a central role throughout the development of numerous mathematical disciplines. Discontinuous group actions and the study of fundamental regions are of utmost importance to modern geometry. Flows and dynamical systems on homogeneous spaces have found a wide range of applications, and of course number theory without discrete groups is unthinkable. This book, written by a master of the subject, is primarily devoted to discrete subgroups of finite covolume in semi-simple Lie groups. Since the notion of "Lie group" is sufficiently general, the author not only proves results in the classical geometry setting, but also obtains theorems of an algebraic nature, e.g. classification results on abstract homomorphisms of semi-simple algebraic groups over global fields. The treatise of course contains a presentation of the author's fundamental rigidity and arithmeticity theorems. The work in this monograph requires the language and basic results from fields such as algebraic groups, ergodic theory, the theory of unitary representatons, and the theory of amenable groups. The author develops the necessary material from these subjects; so that, while the book is of obvious importance for researchers working in related areas, it is essentially self-contained and therefore is also of great interest for advanced students.


Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups

Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups

Author: Armand Borel

Publisher: American Mathematical Soc.

Published: 2013-11-21

Total Pages: 282

ISBN-13: 147041225X

DOWNLOAD EBOOK

It has been nearly twenty years since the first edition of this work. In the intervening years, there has been immense progress in the use of homological algebra to construct admissible representations and in the study of arithmetic groups. This second edition is a corrected and expanded version of the original, which was an important catalyst in the expansion of the field. Besides the fundamental material on cohomology and discrete subgroups present in the first edition, this edition also contains expositions of some of the most important developments of the last two decades.


Lie Groups, Lie Algebras, and Representations

Lie Groups, Lie Algebras, and Representations

Author: Brian Hall

Publisher: Springer

Published: 2015-05-11

Total Pages: 452

ISBN-13: 3319134671

DOWNLOAD EBOOK

This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette


Computational Aspects of Discrete Subgroups of Lie Groups

Computational Aspects of Discrete Subgroups of Lie Groups

Author: Alla Detinko

Publisher: American Mathematical Society

Published: 2023-03-10

Total Pages: 164

ISBN-13: 1470468042

DOWNLOAD EBOOK

This volume contains the proceedings of the virtual workshop on Computational Aspects of Discrete Subgroups of Lie Groups, held from June 14 to June 18, 2021, and hosted by the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The major theme deals with a novel domain of computational algebra: the design, implementation, and application of algorithms based on matrix representation of groups and their geometric properties. It is centered on computing with discrete subgroups of Lie groups, which impacts many different areas of mathematics such as algebra, geometry, topology, and number theory. The workshop aimed to synergize independent strands in the area of computing with discrete subgroups of Lie groups, to facilitate solution of theoretical problems by means of recent advances in computational algebra.


An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras

Author: Alexander A. Kirillov

Publisher: Cambridge University Press

Published: 2008-07-31

Total Pages: 237

ISBN-13: 0521889693

DOWNLOAD EBOOK

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.


p-Adic Lie Groups

p-Adic Lie Groups

Author: Peter Schneider

Publisher: Springer Science & Business Media

Published: 2011-06-11

Total Pages: 259

ISBN-13: 364221147X

DOWNLOAD EBOOK

Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.


Lie Groups and Algebraic Groups

Lie Groups and Algebraic Groups

Author: Arkadij L. Onishchik

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 347

ISBN-13: 364274334X

DOWNLOAD EBOOK

This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.


Discrete Groups, Expanding Graphs and Invariant Measures

Discrete Groups, Expanding Graphs and Invariant Measures

Author: Alex Lubotzky

Publisher: Springer Science & Business Media

Published: 2010-02-17

Total Pages: 201

ISBN-13: 3034603320

DOWNLOAD EBOOK

In the last ?fteen years two seemingly unrelated problems, one in computer science and the other in measure theory, were solved by amazingly similar techniques from representation theory and from analytic number theory. One problem is the - plicit construction of expanding graphs («expanders»). These are highly connected sparse graphs whose existence can be easily demonstrated but whose explicit c- struction turns out to be a dif?cult task. Since expanders serve as basic building blocks for various distributed networks, an explicit construction is highly des- able. The other problem is one posed by Ruziewicz about seventy years ago and studied by Banach [Ba]. It asks whether the Lebesgue measure is the only ?nitely additive measure of total measure one, de?ned on the Lebesgue subsets of the n-dimensional sphere and invariant under all rotations. The two problems seem, at ?rst glance, totally unrelated. It is therefore so- what surprising that both problems were solved using similar methods: initially, Kazhdan’s property (T) from representation theory of semi-simple Lie groups was applied in both cases to achieve partial results, and later on, both problems were solved using the (proved) Ramanujan conjecture from the theory of automorphic forms. The fact that representation theory and automorphic forms have anything to do with these problems is a surprise and a hint as well that the two questions are strongly related.