This unique text brings together into a single framework current research in the three areas of discrete calculus, complex networks, and algorithmic content extraction. Many example applications from several fields of computational science are provided.
This book provides an introduction to combinatorics, finite calculus, formal series, recurrences, and approximations of sums. Readers will find not only coverage of the basic elements of the subjects but also deep insights into a range of less common topics rarely considered within a single book, such as counting with occupancy constraints, a clear distinction between algebraic and analytical properties of formal power series, an introduction to discrete dynamical systems with a thorough description of Sarkovskii’s theorem, symbolic calculus, and a complete description of the Euler-Maclaurin formulas and their applications. Although several books touch on one or more of these aspects, precious few cover all of them. The authors, both pure mathematicians, have attempted to develop methods that will allow the student to formulate a given problem in a precise mathematical framework. The aim is to equip readers with a sound strategy for classifying and solving problems by pursuing a mathematically rigorous yet user-friendly approach. This is particularly useful in combinatorics, a field where, all too often, exercises are solved by means of ad hoc tricks. The book contains more than 400 examples and about 300 problems, and the reader will be able to find the proof of every result. To further assist students and teachers, important matters and comments are highlighted, and parts that can be omitted, at least during a first and perhaps second reading, are identified.
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the subject. Most chapters may be covered or omitted, depending upon the background of the student. For example, the text may be used as a primary reference in an introductory course for difference equations which also includes discrete fractional calculus. Chapters 1—2 provide a basic introduction to the delta calculus including fractional calculus on the set of integers. For courses where students already have background in elementary real analysis, Chapters 1—2 may be covered quickly and readers may then skip to Chapters 6—7 which present some basic results in fractional boundary value problems (FBVPs). Chapters 6—7 in conjunction with some of the current literature listed in the Bibliography can provide a basis for a seminar in the current theory of FBVPs. For a two-semester course, Chapters 1—5 may be covered in depth, providing a very thorough introduction to both the discrete fractional calculus as well as the integer-order calculus.
This book explores the rich and elegant interplay between the two main currents of mathematics, the continuous and the discrete. Such fundamental notions in discrete mathematics as induction, recursion, combinatorics, number theory, discrete probability, and the algorithmic point of view as a unifying principle are continually explored as they interact with traditional calculus.
This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.
This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. More than 200 exercises, many with complete solutions. 1991 edition.
Discrete Mathematics with Ducks, Second Edition is a gentle introduction for students who find the proofs and abstractions of mathematics challenging. At the same time, it provides stimulating material that instructors can use for more advanced students. The first edition was widely well received, with its whimsical writing style and numerous exercises and materials that engaged students at all levels. The new, expanded edition continues to facilitate effective and active learning. It is designed to help students learn about discrete mathematics through problem-based activities. These are created to inspire students to understand mathematics by actively practicing and doing, which helps students better retain what they’ve learned. As such, each chapter contains a mixture of discovery-based activities, projects, expository text, in-class exercises, and homework problems. The author’s lively and friendly writing style is appealing to both instructors and students alike and encourages readers to learn. The book’s light-hearted approach to the subject is a guiding principle and helps students learn mathematical abstraction. Features: The book’s Try This! sections encourage students to construct components of discussed concepts, theorems, and proofs Provided sets of discovery problems and illustrative examples reinforce learning Bonus sections can be used by instructors as part of their regular curriculum, for projects, or for further study
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
The main subject of the monograph is the fractional calculus in the discrete version. The volume is divided into three main parts. Part one contains a theoretical introduction to the classical and fractional-order discrete calculus where the fundamental role is played by the backward difference and sum. In the second part, selected applications of the discrete fractional calculus in the discrete system control theory are presented. In the discrete system identification, analysis and synthesis, one can consider integer or fractional models based on the fractional-order difference equations. The third part of the book is devoted to digital image processing.
The advent of fast computers and the search for efficient algorithms revolutionized combinatorics and brought about the field of discrete mathematics. This book is an introduction to the main ideas and results of discrete mathematics, and with its emphasis on algorithms it should be interesting to mathematicians and computer scientists alike. The book is organized into three parts: enumeration, graphs and algorithms, and algebraic systems. There are 600 exercises with hints and solutions to about half of them. The only prerequisites for understanding everything in the book are linear algebra and calculus at the undergraduate level. Praise for the German edition… This book is a well-written introduction to discrete mathematics and is highly recommended to every student of mathematics and computer science as well as to teachers of these topics. —Konrad Engel for MathSciNet Martin Aigner is a professor of mathematics at the Free University of Berlin. He received his PhD at the University of Vienna and has held a number of positions in the USA and Germany before moving to Berlin. He is the author of several books on discrete mathematics, graph theory, and the theory of search. The Monthly article Turan's graph theorem earned him a 1995 Lester R. Ford Prize of the MAA for expository writing, and his book Proofs from the BOOK with Günter M. Ziegler has been an international success with translations into 12 languages.