Functions of power networks / three-phase systems / networks protection and arrangements affecting disturbance phenomena / electric traction installations / power feed sub-stations / traction motors / telecommunications line transmission systems / disturbing phenomena / effects of coupling.
Electrical safety considerations / human physiological responses to electrical stimuli / human body impedance / corrosion effects of electrified railways / effects of harmonics on neighbouring telecommunication lines / permissible voltage and current levels to limit danger or disturbance.
Electric traction is the most favourable type of power supply for electric railways from both an ecological and an economic perspective. In the case of urban mass transit and high-speed trains it is the only possible type of traction. Its reliability largely depends on contact lines, which must operate in all climatic conditions with as high availability and as little maintenance as possible. Extreme demands arise when overhead contact lines are required to provide reliable and safe power transmission to traction vehicles travelling at speeds in excess of 250 km/h. The authors have used their worldwide experience to provide comprehensive descriptions of configuration, mechanical and electrical design, installation, operation and maintenance of contact lines for local and long-distance transportation systems, including high-speed lines. In this book, railway company professionals and manufacturers of contact line systems, students and those embarking on a career in this field will find practical guidance in the planning and implementation of systems, product descriptions, specifications and technical data, including standards and other regulations. Special emphasis is laid on the interaction of the individual components of power supply, especially between contact lines and pantographs. Since large sections of the book are dedicated to system aspects, consultant engineers can also use it as a basis for designing systems as well as interfaces to other subsystems of electric railway engineering. The contents of the book are rounded off by examples of running systems.
This four-volume reference work builds upon the success of past editions of Elsevier’s Corrosion title (by Shreir, Jarman, and Burstein), covering the range of innovations and applications that have emerged in the years since its publication. Developed in partnership with experts from the Corrosion and Protection Centre at the University of Manchester, Shreir’s Corrosion meets the research and productivity needs of engineers, consultants, and researchers alike. Incorporates coverage of all aspects of the corrosion phenomenon, from the science behind corrosion of metallic and non-metallic materials in liquids and gases to the management of corrosion in specific industries and applications Features cutting-edge topics such as medical applications, metal matrix composites, and corrosion modeling Covers the benefits and limitations of techniques from scanning probes to electrochemical noise and impedance spectroscopy
Practical Methods for Analysis and Design of HV Installation Grounding Systems gives readers a basic understanding of the modeling characteristics of the major components of a complex grounding system. One by one, the author develops and analyzes each component as a standalone element, but then puts them together, considering their mutual disposition, or so-called proximity effect. This is the first book to enable the making and analysis of the most complex grounding systems that are typical for HV substations located in urban areas that uses relatively simple mathematical operations instead of modern computers. Since the presented methods enable problem-solving for more complex issues than the ones solved using National, IEC and/or IEEE standards, this book can be considered as an appendix to these standards. - Develops general equations of lumped parameter ladder circuits - Includes the analytical expression for determination of ground fault current distribution for a fault anywhere along a cable line - Presents measurement and analytical methods for the determination of actual ground fault current distribution for high-voltage substations located in urban areas - Provides the analytical procedure for the determination of the critical ground fault position for faults appearing in outgoing transmission lines - Defines testing procedure for the correct evaluation of grounding systems of substations located in urban areas
Relevant Characteristics of Power Lines Passing through Urban Areas covers a variety of problems in electric-power delivery that were considered for a long time in professional and scientific circles unsolvable. Taking into account the influence of all surrounding metal installations on the relevant characteristics of HV and EHV lines passing through urban and/or suburban areas, this reference provides safe and economical solutions on how to check and achieve prescribed safety conditions, determine the dangerous and harmful inductive influence of HV and EHV lines, enable compensation of deficiency for all unknowns, understand relevant data concerning surrounding metal installations, and more. This book is necessary for properly dimensioning cable systems, considering the existing underground structures near substations and providing engineers with the necessary information they need to design normal operations and determine fault events. - Includes methodologies that enable solutions for several types of problems in electric-power delivery that were previously unsolvable - Defines specific field measurements by guiding the development of corresponding analytical procedures - Showcases a clear scope for the application for HV and EHV distribution networks