Directed Light Fabrication of Refractory Metals and Alloys

Directed Light Fabrication of Refractory Metals and Alloys

Author:

Publisher:

Published: 2006

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This report covers deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. (1) Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. (2) The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. (3) The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06[micro]m), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. (4) The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required.


Directed Light Fabrication of Refractory Metals

Directed Light Fabrication of Refractory Metals

Author:

Publisher:

Published: 1997

Total Pages: 9

ISBN-13:

DOWNLOAD EBOOK

Directed Light Fabrication (DLF) is a metal, rapid fabrication process that fuses metal powders to full density into a solid replica of a computer modeled component. It has been shown feasible for forming nearly any metal and also intermetallics to near net shape with a single process. DLF of refractory pure metals is feasible, bypassing the extensive series of conventional processing steps used for processing these high melting point materials. Tungsten, tantalum, and rhenium were processed and show a continuous resolidified microstructure. Porosity was a problem for the tantalum and rhenium powders produced by chemical reduction processes but not for the tungsten powder spherodized in a plasma arc. Chemical analysis of powder compared to the DLF deposit showed reductions in carbon, oxygen and hydrogen, indicating that process parameters may also be optimized for evolution of residual gases in the deposits.


Materials Analysis of Deposits Made by the Directed-light Fabrication Process

Materials Analysis of Deposits Made by the Directed-light Fabrication Process

Author:

Publisher:

Published: 1996

Total Pages: 5

ISBN-13:

DOWNLOAD EBOOK

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The directed-light fabrication (DLF) process is a unique method of forming three-dimensional objects by fusing airborne powders in the focus of a laser beam. This process bypasses conventional ingot processing steps of casting, homogenization, extrusion, forging, and possibly some or all of the required machining. It provides a new ''near-net-shape'' fabrication technology for difficult-to-fabricate materials such as refractory metals, metal composites, intermetallics, ceramics, and possibly superconductors. This project addresses the solidification behavior during DLF processing to characterize the technique in terms of solid/liquid interface characteristics, cooling rates, and growth rates. Materials studied were Ag-Cu, Fe-Ni, 316SS, and Al-Cu.


Rapid Fabrication of Materials Using Directed Light Fabrication

Rapid Fabrication of Materials Using Directed Light Fabrication

Author:

Publisher:

Published: 1997

Total Pages: 9

ISBN-13:

DOWNLOAD EBOOK

Directed light fabrication (DLF) is a rapid fabrication process that fuses gas delivered metal powders within a focal zone of a laser beam to produce fully dense, near-net shape, 3-dimensional metal components from a computer generated solid model. Computer controls dictate the metal deposition pathways, and no preforms or molds are required to generate complex sample geometries. The focal zone of the laser beam is programmed to move along or across a part cross-section, and coupled with a multi-axis sample stage, produces the desired part. By maintaining a constant molten puddle within the focal zone, a continuous liquid/solid interface is possible while achieving constant cooling rates that can be varied between 10 to 104 K s−1 and solidification growth rates (that scale with the beam velocity) ranging up to 102 m s−1. The DLF technique offers unique advantages over conventional thermomechanical processes in that many labor and equipment intensive steps can be avoided. Moreover, owing to the flexibility in power distributions of lasers, a variety of materials can be processed, ranging from aluminum alloys to rhenium, and including intermetallics such as Mo5Si3. As a result, the rapid fabrication of conventional and advanced materials are possible.


The Effect of Fabrication History and Microstructure on the Mechanical Properties of Refractory Metals and Alloys

The Effect of Fabrication History and Microstructure on the Mechanical Properties of Refractory Metals and Alloys

Author: Albert G. Imgram

Publisher:

Published: 1963

Total Pages: 80

ISBN-13:

DOWNLOAD EBOOK

This report summarizes the present knowledge concerning the relationship among fabrication history, metallurgical structure, and the mechanical properites of the refractory metals columbium, tantalum, bolybdenum, and tungsten, and their alloys. These are the refractory metals currently reveiveing the most attention for aerospace applications, and are therefore the materials considered in this survey. The report is organized into three main sections, titled ''Fabrication'', ''Microstructure and Alloying'', and ''Interstitial Impurities''. The data presented were selected as those which best illustrate the topics discussed. Descriptions of the metaljurgical principles involved are included. Suggestions for optimizing mechanical properties by controlling metallurgical structure are made where possible. (Author).


Department of Defense Refractory Metals Sheet-rolling Program

Department of Defense Refractory Metals Sheet-rolling Program

Author: H. R. Ogden

Publisher:

Published: 1961

Total Pages: 44

ISBN-13:

DOWNLOAD EBOOK

A summary is presented of the status of the Department of Defense Refractory Metals SheetRolling Program to accelerate the development of production techniques for high-quality, consistent sheet products from the refractory metals (Nb, Mo, Ta, and W) and their alloys. The program includes: (1) development of sheet production techniques, (2) establishment of minimum data re uired to evaluate mill production, (3) evaluation of fabrication characteristics of the sheet produced, and (4) establishment of design data. Contracts were awarded for the development of sheet production techniques for all four refractory metals. One contract was awarded for the evaluation of Mo alloy sheet fabrication characteristics. (Author).


Solidification Behavior During Directed Light Fabrication

Solidification Behavior During Directed Light Fabrication

Author:

Publisher:

Published: 1995

Total Pages: 7

ISBN-13:

DOWNLOAD EBOOK

Directed light fabrication (DLF) is a process that fuses gas delivered metal powders within a focal zone of a laser beam to produce fully dense, 3-dimensional metal components. A variety of materials have been processed with DLF, ranging from steels to tungsten, and including intermetallics such as NiAl and MoSi2. To evaluate the processing parameters and resulting microstructures, solidification studies have been performed on defined alloy systems. For example, solidification cooling rates have been determined based upon secondary dendrite arm spacings in Fe-based alloys. In addition, eutectic spacings have been used to define growth velocities during solidification. Cooling rates vary from 101-105 K s−1 and growth rates vary between 1--50 mm s−1. As a result, process definition has been developed based upon the microstructural development during solidification. The materials explored were Ag-19Cu, Fe-24.8Ni, 316 stainless steel, Al-33Cu, W, MoSi2 and NiAl.