Borehole imaging is among the fastest and most accurate methods for collecting high resolution subsurface data. Recent breakthroughs in acquisition, tool design, and modeling software provide real-time subsurface images of incredible detail, from the drill bit straight to a workstation. This text portrays key applications of dipmeter and image log data across the exploration and production life cycle.
Logging has come a long way from the simple electrical devices of the early years. Today's tools are considerably more accurate and are used for an increasingly diverse number of tasks. Among these are tools that characterise geological properties of rocks in the borehole. Combined with new technology to drill deviated wells, the geoscientist now has tools which allow him to characterise and develop reservoirs more accurately than ever. This book, written for researchers, graduate students and practising geoscientists, documents these techniques and illustrates their use in a number of typical case studies.
This revised and rewritten edition presents an account of the various open-hole log tools and the data they generate. In particular, it provides a comprehensive geological interpretation of the derived data enabling the geologist to capitalize fully upon well data.
This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce exploitation costs. It illustrates their successful application through case studies taken from oil and gas fields around the world. This book is a practical reference for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.
A Comprehensive review of modern stratigraphic methods. The stratigraphic record is the major repository of information about the geological history of Earth, a record stretching back for nearly 4 billion years. Stratigraphic studies fill out our planet’s plate-tectonic history with the details of paleogeography, past climates, and the record of evolution, and stratigraphy is at the heart of the effort to find and exploit fossil fuel resources. Modern stratigraphic methods are now able to provide insights into past geological events and processes on time scales with unprecedented accuracy and precision, and have added much to our understanding of global tectonic and climatic processes. It has taken 200 years and a modern revolution to bring all the necessary developments together to create the modern, dynamic science that this book sets out to describe. Stratigraphy now consists of a suite of integrated concepts and methods, several of which have considerable predictive and interpretive power. The new, integrated, dynamic science that Stratigraphy has become is now inseparable from what were its component parts, including sedimentology, chronostratigraphy, and the broader aspects of basin analysis.
This book primarily focuses on the principles and applications of electric logging, sonic logging, nuclear logging, production logging and NMR logging, especially LWD tools, Sondex production logging tools and other advanced image logging techniques, such as ECLIPS 5700, EXCELL 2000 etc. that have been developed and used in the last two decades. Moreover, it examines the fundamentals of rock mechanics, which contribute to applications concerning the stability of borehole sidewall, safety density window of drilling fluid, fracturing etc. As such, the book offers a valuable resource for a wide range of readers, including students majoring in petrophysics, geophysics, geology and seismology, and engineers working in well logging and exploitation.
This hand guide in the Gulf Drilling Guides series offers practical techniques that are valuable to petrophysicists and engineers in their day-to-day jobs. Based on the author's many years of experience working in oil companies around the world, this guide is a comprehensive collection of techniques and rules of thumb that work.The primary functions of the drilling or petroleum engineer are to ensure that the right operational decisions are made during the course of drilling and testing a well, from data gathering, completion and testing, and thereafter to provide the necessary parameters to enable an accurate static and dynamic model of the reservoir to be constructed. This guide supplies these, and many other, answers to their everyday problems. There are chapters on NMR logging, core analysis, sampling, and interpretation of the data to give the engineer a full picture of the formation. There is no other single guide like this, covering all aspects of well logging and formation evaluation, completely updated with the latest techniques and applications.·A valuable reference dedicated solely to well logging and formation evaluation.·Comprehensive coverage of the latest technologies and practices, including, troubleshooting for stuck pipe, operational decisions, and logging contracts.·Packed with money-saving and time saving strategies for the engineer working in the field.
The practical application of structural geology in industry is varied and diverse; it is relevant at all scales, from plate-wide screening of new exploration areas down to fluid-flow behaviour along individual fractures. From an industry perspective, good structural practice is essential since it feeds into the quantification and recovery of reserves and ultimately underpins commercial investment choices. Many of the fundamental structural principles and techniques used by industry can be traced back to the academic community, and this volume aims to provide insights into how structural theory translates into industry practice. Papers in this publication describe case studies and workflows that demonstrate applied structural geology, covering a spread of topics including trap definition, fault seal, fold-and-thrust belts, fractured reservoirs, fluid flow and geomechanics. Against a background of evolving ideas, new data types and advancing computational tools, the volume highlights the need for structural geologists to constantly re-evaluate the role they play in solving industrial challenges.
Over the past 20 years there has been a major growth in efforts to quantify the geometry and dimensions of sediment bodies from analogues to provide quantitative input to geological models. The aim of this volume is to examine the current state of the art, from both an industry and an academic perspective. Contributions discuss the challenges of extracting relevant data from different types of sedimentary analogue (outcrop, process models, seismic) and the application and significance of such information for improving predictions from subsurface static and dynamic models. Special attention is given to modelling reservoir properties and gridding issues for predicting subsurface fluid flow. As such, the volume is expected to be of interest to both the geoscience community concerned with the fundamentals of sedimentary architecture as well as geological modellers and engineers interested in how these characteristics are modelled and influence subsurface predictions.