Size Limits of Very Small Microorganisms

Size Limits of Very Small Microorganisms

Author: National Research Council

Publisher: National Academies Press

Published: 1999-09-13

Total Pages: 171

ISBN-13: 0309172748

DOWNLOAD EBOOK

How small can a free-living organism be? On the surface, this question is straightforward-in principle, the smallest cells can be identified and measured. But understanding what factors determine this lower limit, and addressing the host of other questions that follow on from this knowledge, require a fundamental understanding of the chemistry and ecology of cellular life. The recent report of evidence for life in a martian meteorite and the prospect of searching for biological signatures in intelligently chosen samples from Mars and elsewhere bring a new immediacy to such questions. How do we recognize the morphological or chemical remnants of life in rocks deposited 4 billion years ago on another planet? Are the empirical limits on cell size identified by observation on Earth applicable to life wherever it may occur, or is minimum size a function of the particular chemistry of an individual planetary surface? These questions formed the focus of a workshop on the size limits of very small organisms, organized by the Steering .Group for the Workshop on Size Limits of Very Small Microorganisms and held on October 22 and 23, 1998. Eighteen invited panelists, representing fields ranging from cell biology and molecular genetics to paleontology and mineralogy, joined with an almost equal number of other participants in a wide-ranging exploration of minimum cell size and the challenge of interpreting micro- and nano-scale features of sedimentary rocks found on Earth or elsewhere in the solar system. This document contains the proceedings of that workshop. It includes position papers presented by the individual panelists, arranged by panel, along with a summary, for each of the four sessions, of extensive roundtable discussions that involved the panelists as well as other workshop participants.


The Perfect Slime

The Perfect Slime

Author: Hans-Curt Flemming

Publisher: IWA Publishing

Published: 2016-09-15

Total Pages: 336

ISBN-13: 1780407416

DOWNLOAD EBOOK

The Perfect Slime presents the latest state of knowledge and all aspects of the Extracellular Polymeric Substances, (EPS) matrix – from the ecological and health to the antifouling perspectives. The book brings together all the current material in order to expand our understanding of the functions, properties and characteristics of the matrix as well as the possibilities to strengthen or weaken it. The EPS matrix represents the immediate environment in which biofilm organisms live. From their point of view, this matrix has paramount advantages. It allows them to stay together for extended periods and form synergistic microconsortia, it retains extracellular enzymes and turns the matrix into an external digestion system and it is a universal recycling yard, it protects them against desiccation, it allows for intense communication and represents a huge genetic archive. They can remodel their matrix, break free and eventually, they can use it as a nutrient source. The EPS matrix can be considered as one of the emergent properties of biofilms and are a major reason for the success of this form of life. Nevertheless, they have been termed the “black matter of biofilms” for good reasons. First of all: the isolation methods define the results. In most cases, only water soluble EPS components are investigated; insoluble ones such as cellulose or amyloids are much less included. In particular in environmental biofilms with many species, it is difficult to impossible isolate, separate the various EPS molecules they are encased in and to define which species produced which EPS. The regulation and the factors which trigger or inhibit EPS production are still very poorly understood. Furthermore: bacteria are not the only microorganisms to produce EPS. Archaea, Fungi and algae can also form EPS. This book investigates the questions, What is their composition, function, dynamics and regulation? What do they all have in common?


Agrobacterium: From Biology to Biotechnology

Agrobacterium: From Biology to Biotechnology

Author: Tzvi Tzfira

Publisher: Springer Science & Business Media

Published: 2007-12-25

Total Pages: 768

ISBN-13: 0387722904

DOWNLOAD EBOOK

Agrobacterium is a plant pathogen which causes the “crown-gall” disease, a neoplastic growth that results from the transfer of a well-defined DNA segment (“transferred DNA”, or “T-DNA”) from the bacterial Ti (tumor-inducing) plasmid to the host cell, its integration into the host genome, and the expression of oncogenes contained on the T-DNA. The molecular machinery, needed for T-DNA generation and transport into the host cell and encoded by a series of chromosomal (chv) and Ti-plasmid virulence (vir) genes, has been the subject of numerous studies over the past several decades. Today, Agrobacterium is the tool of choice for plant genetic engineering with an ever expanding host range that includes many commercially important crops, flowers, and tree species. Furthermore, its recent application for the genetic transformation of non-plant species, from yeast to cultivated mushrooms and even to human cells, promises this bacterium a unique place in the future of biotechnological applications. The book is a comprehensive volume describing Agrobacterium's biology, interactions with host species, and uses for genetic engineering.


Sequence — Evolution — Function

Sequence — Evolution — Function

Author: Eugene V. Koonin

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 482

ISBN-13: 1475737831

DOWNLOAD EBOOK

Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.


Photobiology

Photobiology

Author: Lars Olof Björn

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 452

ISBN-13: 9401005818

DOWNLOAD EBOOK

Photobiology - the science of light and life - begins with basic principles and the physics of light and continues with general photobiological research methods, such as generation of light, measurement of light, and action spectroscopy. In an interdisciplinary way, it then treats how organisms tune their pigments and structures to the wavelength components of light, and how light is registered by organisms. Then follow various examples of photobiological phenomena: the design of the compound eye in relation to the properties of light, phototoxicity, photobiology of the human skin and of vitamin D, photomorphogenesis, photoperiodism, the setting of the biological clock by light, and bioluminescence. A final chapter is devoted to teaching experiments and demonstrations in photobiology. This book encompasses topics from a diverse array of traditional disciplines: physics, biochemistry, medicine, zoology, botany, microbiology, etc., and makes different aspects of photobiology accessible to experts in all these areas as well as to the novice.


Comparative Ecology of Microorganisms and Macroorganisms

Comparative Ecology of Microorganisms and Macroorganisms

Author: John H. Andrews

Publisher: Springer

Published: 2017-06-27

Total Pages: 365

ISBN-13: 1493968971

DOWNLOAD EBOOK

This second edition textbook offers an expanded conceptual synthesis of microbial ecology with plant and animal ecology. Drawing on examples from the biology of microorganisms and macroorganisms, this textbook provides a much-needed interdisciplinary approach to ecology. The focus is the individual organism and comparisons are made along six axes: genetic variation, nutritional mode, size, growth, life cycle, and influence of the environment. When it was published in 1991, the first edition of Comparative Ecology of Microorganisms and Macroorganisms was unique in its attempt to clearly compare fundamental ecology across the gamut of size. The explosion of molecular biology and the application of its techniques to microbiology and organismal biology have particularly demonstrated the need for interdisciplinary understanding. This updated and expanded edition remains unique. It treats the same topics at greater depth and includes an exhaustive compilation of both the most recent relevant literature in microbial ecology and plant/animal ecology, as well as the early research papers that shaped the concepts and theories discussed. Among the completely updated topics in the book are phylogenetic systematics, search algorithms and optimal foraging theory, comparative metabolism, the origins of life and evolution of multicellularity, and the evolution of life cycles. From Reviews of the First Edition: "John Andrews has succeeded admirably in building a bridge that is accessible to all ecologists." -Ecology "I recommend this book to all ecologists. It is a thoughtful attempt to integrate ideas from, and develop common themes for, two fields of ecology that should not have become fragmented." -American Scientist "Such a synthesis is long past due, and it is shameful that ecologists (both big and little) have been so parochial." -The Quarterly Review of Biology


Prokaryotic Cytoskeletons

Prokaryotic Cytoskeletons

Author: Jan Löwe

Publisher: Springer

Published: 2017-05-11

Total Pages: 457

ISBN-13: 331953047X

DOWNLOAD EBOOK

This book describes the structures and functions of active protein filaments, found in bacteria and archaea, and now known to perform crucial roles in cell division and intra-cellular motility, as well as being essential for controlling cell shape and growth. These roles are possible because the cytoskeletal and cytomotive filaments provide long range order from small subunits. Studies of these filaments are therefore of central importance to understanding prokaryotic cell biology. The wide variation in subunit and polymer structure and its relationship with the range of functions also provide important insights into cell evolution, including the emergence of eukaryotic cells. Individual chapters, written by leading researchers, review the great advances made in the past 20-25 years, and still ongoing, to discover the architectures, dynamics and roles of filaments found in relevant model organisms. Others describe one of the families of dynamic filaments found in many species. The most common types of filament are deeply related to eukaryotic cytoskeletal proteins, notably actin and tubulin that polymerise and depolymerise under the control of nucleotide hydrolysis. Related systems are found to perform a variety of roles, depending on the organisms. Surprisingly, prokaryotes all lack the molecular motors associated with eukaryotic F-actin and microtubules. Archaea, but not bacteria, also have active filaments related to the eukaryotic ESCRT system. Non-dynamic fibres, including intermediate filament-like structures, are known to occur in some bacteria.. Details of known filament structures are discussed and related to what has been established about their molecular mechanisms, including current controversies. The final chapter covers the use of some of these dynamic filaments in Systems Biology research. The level of information in all chapters is suitable both for active researchers and for advanced students in courses involving bacterial or archaeal physiology, molecular microbiology, structural cell biology, molecular motility or evolution. Chapter 3 of this book is open access under a CC BY 4.0 license.


Industrial Pharmaceutical Biotechnology

Industrial Pharmaceutical Biotechnology

Author: Heinrich Klefenz

Publisher: Wiley-VCH

Published: 2002-04-22

Total Pages: 328

ISBN-13:

DOWNLOAD EBOOK

This volume focuses on pharmaceutical biotechnology as a key area of life sciences. The complete range of concepts, processes and technologies of biotechnology is applied in modern industrial pharmaceutical research, development and production. The results of genome sequencing and studies of biological-genetic function are combined with chemical, micro-electronic and microsystem technology to produce medical devices and diagnostic biochips. A multitude of biologically active molecules is expanded by additional novel structures created with newly arranged gene clusters and bio-catalytic chemical processes. New organisational structures in the co-operation of institutes, companies and networks enable faster knowledge and product development and immediate application of the results of research and process development. This book is the ideal source of information for scientists and engineers in research and development, for decision-makers in biotech, pharma and chemical corporations, as well as for research institutes, but also for founders of biotech companies and people working for venture capital corporations.


Principles of Genome Analysis and Genomics

Principles of Genome Analysis and Genomics

Author: Sandy B. Primrose

Publisher: John Wiley & Sons

Published: 2009-04-01

Total Pages: 288

ISBN-13: 144431128X

DOWNLOAD EBOOK

With the first draft of the human genome project in the publicdomain and full analyses of model genomes now available, thesubject matter of 'Principles of Genome Analysis and Genomics' iseven 'hotter' now than when the first two editions were publishedin 1995 and 1998. In the new edition of this very practical guideto the different techniques and theory behind genomes and genomeanalysis, Sandy Primrose and new author Richard Twyman provide afresh look at this topic. In the light of recent excitingadvancements in the field, the authors have completely revised andrewritten many parts of the new edition with the addition of fivenew chapters. Aimed at upper level students, it is essential thatin this extremely fast moving topic area the text is up to date andrelevant. Completely revised new edition of an establishedtextbook. Features new chapters and examples from exciting new researchin genomics, including the human genome project. Excellent new co-author in Richard Twyman, also co-author ofthe new edition of hugely popular Principles of GeneManipulation. Accompanying web-page to help students deal with this difficulttopic at www.blackwellpublishing.com/primrose


Bacterial Chemosensing

Bacterial Chemosensing

Author: Michael D. Manson

Publisher: Humana Press

Published: 2018-02-11

Total Pages: 389

ISBN-13: 9781493975761

DOWNLOAD EBOOK

This volume covers a wide range of up-to-date technologies that have been successfully applied to study the chemosensing behavior of the traditional model species, such as Escherichia coli and Salmonella typhimurium, while being also applicable to a wide spectrum of other species. Beginning with an introduction, the sections of the book explore methods for studying bacterial chemotaxis at the population and whole-cell levels, in vivo analysis of receptor function, cryo-EM methods for studying chemoreceptor structure, as well as intracellular movement of chemosensory proteins, high-throughput methods to screen for novel chemoeffectors, and chemical tools and computer simulations for analyzing chemotaxis. Written for the highly successful Methods in Molecular Biology series, chapters include brief introductions to their topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips for troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bacterial Chemosensing: Methods and Protocols provides an extensive repertoire of approaches that can be extended to understanding chemotaxis, in particular, and chemosensing, in general, in the context of the enormously varied lifestyles adopted in the larger bacterial world.