Defects and Diffusion in Silicon Processing: Volume 469

Defects and Diffusion in Silicon Processing: Volume 469

Author: Tomas Diaz de la Rubia

Publisher: Materials Research Society

Published: 1997-11-21

Total Pages: 0

ISBN-13: 9781558993730

DOWNLOAD EBOOK

A strong effort is has been devoted to the investigation of defects and diffusion phenomena in silicon. This effort is not only driven by the stringent technological requirements for the processing of integrated circuits of increased complexity and miniaturization, but also by the lack of fundamental understanding of many of the critical parameters and mechanisms involved. Experimental and theoretical investigations are needed to identify the properties of the defects, the mechanisms of impurity diffusion and the strength of impurity-defect, defect-defect, and impurity-impurity interactions. This book provides a unique and interdisciplinary forum for the discussion of experimental, theoretical and applied aspects of defects and diffusion phenomena in silicon. Topics include: defect properties and diffusion phenomena in silicon; experimental and theoretical assessments of defect properties; transient-enhanced diffusion and dopant clustering; damage evolution and extended defects and gettering procedures.


Transport Phenomena in Liquid Phase Diffusion Growth of Silicon Germanium

Transport Phenomena in Liquid Phase Diffusion Growth of Silicon Germanium

Author: Neil Alexander Armour

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Silicon Germanium, SiGe, is an important emerging semiconductor material. In order to optimize growth techniques for SiGe production, such as Liquid Phase Diffusion, LPD, or Melt Replenishment Czochralski, a good understanding of the transport phenomena in the melt is required. In the context of the Liquid Phase Diffusion growth technique, the transport phenomena of silicon in a silicon-germanium melt has been explored. Experiments isolating the dissolution and transport of silicon into a germanium melt have been conducted under a variety of flow conditions. Preliminary modeling of these experiments has also been conducted and agreement with experiments has been shown. In addition, full LPD experiments have also been conducted under varying flow conditions. Altered flow conditions were achieved through the application of a variety of magnetic fields. Through the experimental and modeling work better understanding of the transport mechanisms at work in a silicon-germanium melt has been achieved.


Atomic Diffusion in Semiconductors

Atomic Diffusion in Semiconductors

Author: D. Shaw

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 615

ISBN-13: 1461586364

DOWNLOAD EBOOK

The diffusion or migration of atoms in matter, of whatever form, is a basic consequence of the existence of atoms. In metals, atomic diffusion has a well established position of importance as it is recognized that there are few metallurgical processes which do not embody the diffusion of one or more of the constituents. As regards semiconductors any thermal annealing treatment involves atomic diffusion. In semiconductor technology diffusion processes provide a vital and basic means of fabricating doped structures. Notwithstanding the importance of diffusion in the preparative processes of semiconductor structures and samples, the diffusion based aspects have acquired an empirical outlook verging almost on alchemy. The first attempt to present a systematic account of semiconductor diffusion processes was made by Boltaks [11 in 1961. During the decade since Boltaks' book appeared much work germane to understanding the atomic mechanisms responsible for diffusion in semiconductors has been published. The object of the present book is to give an account of, and to consolidate, present knowledge of semiconductor diffusion in terms of basic concepts of atomic migration in crystalline lattices. To this end, exhaustive compilations of empirical data have been avoided as these are available elsewhere [2, 31 : attention has been limited to considering evidence capable of yielding insight into the physical processes concerned in atomic diffusion.


Diffusion in Crystalline Solids

Diffusion in Crystalline Solids

Author: G E Murch

Publisher: Academic Press

Published: 2012-12-02

Total Pages: 503

ISBN-13: 0323140300

DOWNLOAD EBOOK

Diffusion in Crystalline Solids addresses some of the most active areas of research on diffusion in crystalline solids. Topics covered include measurement of tracer diffusion coefficients in solids, diffusion in silicon and germanium, atom transport in oxides of the fluorite structure, tracer diffusion in concentrated alloys, diffusion in dislocations, grain boundary diffusion mechanisms in metals, and the use of the Monte Carlo Method to simulate diffusion kinetics. This book is made up of eight chapters and begins with an introduction to the measurement of diffusion coefficients with radioisotopes. The following three chapters consider diffusion in materials of substantial technological importance such as silicon and germanium. Atomic transport in oxides of the fluorite structure is described, and diffusion in concentrated alloys, including intermetallic compounds, is analyzed. The next two chapters delve into diffusion along short-circuiting paths, focusing on the effect of diffusion down dislocations on the form of the tracer concentration profile. The book also discusses the mechanisms of diffusion in grain boundaries in metals by invoking considerable work done on grain-boundary structure. The last two chapters are concerned with computer simulation, paying particular attention to machine calculations and the Monte Carlo method. The book concludes by exploring the fundamental atomic migration process and presenting some state-of-the-art calculations for defect energies and the topology of the saddle surface. Students and researchers of material science will find this book extremely useful.


Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon

Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon

Author: Peter Pichler

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 576

ISBN-13: 3709105978

DOWNLOAD EBOOK

This book contains the first comprehensive review of intrinsic point defects, impurities and their complexes in silicon. Besides compiling the structures, energetic properties, identified electrical levels and spectroscopic signatures, and the diffusion behaviour from investigations, it gives a comprehensive introduction into the relevant fundamental concepts.


Springer Handbook of Electronic and Photonic Materials

Springer Handbook of Electronic and Photonic Materials

Author: Safa Kasap

Publisher: Springer

Published: 2017-10-04

Total Pages: 1536

ISBN-13: 331948933X

DOWNLOAD EBOOK

The second, updated edition of this essential reference book provides a wealth of detail on a wide range of electronic and photonic materials, starting from fundamentals and building up to advanced topics and applications. Its extensive coverage, with clear illustrations and applications, carefully selected chapter sequencing and logical flow, makes it very different from other electronic materials handbooks. It has been written by professionals in the field and instructors who teach the subject at a university or in corporate laboratories. The Springer Handbook of Electronic and Photonic Materials, second edition, includes practical applications used as examples, details of experimental techniques, useful tables that summarize equations, and, most importantly, properties of various materials, as well as an extensive glossary. Along with significant updates to the content and the references, the second edition includes a number of new chapters such as those covering novel materials and selected applications. This handbook is a valuable resource for graduate students, researchers and practicing professionals working in the area of electronic, optoelectronic and photonic materials.