Differential Geometry in the Large

Differential Geometry in the Large

Author: Heinz Hopf

Publisher: Springer

Published: 2003-07-01

Total Pages: 195

ISBN-13: 3540394826

DOWNLOAD EBOOK

These notes consist of two parts: Selected in York 1) Geometry, New 1946, Topics University Notes Peter Lax. by Differential in the 2) Lectures on Stanford Geometry Large, 1956, Notes J.W. University by Gray. are here with no essential They reproduced change. Heinz was a mathematician who mathema- Hopf recognized important tical ideas and new mathematical cases. In the phenomena through special the central idea the of a or difficulty problem simplest background is becomes clear. in this fashion a crystal Doing geometry usually lead serious allows this to to - joy. Hopf's great insight approach for most of the in these notes have become the st- thematics, topics I will to mention a of further try ting-points important developments. few. It is clear from these notes that laid the on Hopf emphasis po- differential Most of the results in smooth differ- hedral geometry. whose is both t1al have understanding geometry polyhedral counterparts, works I wish to mention and recent important challenging. Among those of Robert on which is much in the Connelly rigidity, very spirit R. and in - of these notes (cf. Connelly, Conjectures questions open International of Mathematicians, H- of gidity, Proceedings Congress sinki vol. 1, 407-414) 1978, .


Differential Geometry in the Large

Differential Geometry in the Large

Author: Owen Dearricott

Publisher: Cambridge University Press

Published: 2020-10-22

Total Pages: 401

ISBN-13: 1108812813

DOWNLOAD EBOOK

From Ricci flow to GIT, physics to curvature bounds, Sasaki geometry to almost formality. This is differential geometry at large.


Manifolds and Differential Geometry

Manifolds and Differential Geometry

Author: Jeffrey Marc Lee

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 690

ISBN-13: 0821848151

DOWNLOAD EBOOK

Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.


Differential Geometry

Differential Geometry

Author: J. J. Stoker

Publisher: John Wiley & Sons

Published: 2011-09-09

Total Pages: 432

ISBN-13: 1118165470

DOWNLOAD EBOOK

This classic work is now available in an unabridged paperback edition. Stoker makes this fertile branch of mathematics accessible to the nonspecialist by the use of three different notations: vector algebra and calculus, tensor calculus, and the notation devised by Cartan, which employs invariant differential forms as elements in an algebra due to Grassman, combined with an operation called exterior differentiation. Assumed are a passing acquaintance with linear algebra and the basic elements of analysis.


Differential Geometry of Curves and Surfaces

Differential Geometry of Curves and Surfaces

Author: Victor Andreevich Toponogov

Publisher: Springer Science & Business Media

Published: 2006-09-10

Total Pages: 215

ISBN-13: 0817644024

DOWNLOAD EBOOK

Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels


Applied Differential Geometry

Applied Differential Geometry

Author: William L. Burke

Publisher: Cambridge University Press

Published: 1985-05-31

Total Pages: 440

ISBN-13: 9780521269292

DOWNLOAD EBOOK

This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.


Differential Geometry and Topology

Differential Geometry and Topology

Author: Keith Burns

Publisher: CRC Press

Published: 2005-05-27

Total Pages: 408

ISBN-13: 9781584882534

DOWNLOAD EBOOK

Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.


An Introduction to Differential Geometry

An Introduction to Differential Geometry

Author: T. J. Willmore

Publisher: Courier Corporation

Published: 2013-05-13

Total Pages: 338

ISBN-13: 0486282104

DOWNLOAD EBOOK

This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.


Metric Structures in Differential Geometry

Metric Structures in Differential Geometry

Author: Gerard Walschap

Publisher: Springer Science & Business Media

Published: 2012-08-23

Total Pages: 235

ISBN-13: 0387218262

DOWNLOAD EBOOK

This book offers an introduction to the theory of differentiable manifolds and fiber bundles. It examines bundles from the point of view of metric differential geometry: Euclidean bundles, Riemannian connections, curvature, and Chern-Weil theory are discussed, including the Pontrjagin, Euler, and Chern characteristic classes of a vector bundle. These concepts are illustrated in detail for bundles over spheres.