The Differential Equations Problem Solver

The Differential Equations Problem Solver

Author: Research and Education Association

Publisher: Research & Education Assoc.

Published: 1978

Total Pages: 1564

ISBN-13: 9780878915132

DOWNLOAD EBOOK

This book is intended to help students in differential equations to find their way through the complex material which involves a wide variety of concepts. Topic by topic, and problem by problem, the book provides detailed illustrations of solution methods which are usually not apparent to students.


Differential Equations Problem Solver

Differential Equations Problem Solver

Author: David Arterbum

Publisher: Research & Education Assoc.

Published: 2012-06-14

Total Pages: 1570

ISBN-13: 0738668303

DOWNLOAD EBOOK

REA’s Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies. The Differential Equations Problem Solver is the perfect resource for any class, any exam, and any problem.


Mathematics for Engineers Problem Solver

Mathematics for Engineers Problem Solver

Author:

Publisher: Research & Education Assoc.

Published:

Total Pages: 844

ISBN-13: 9780738670768

DOWNLOAD EBOOK

Designed specifically for use by engineering students. Contains comprehensive treatments of all areas of mathematics and their applications. Included are problems and solutions for calculus, complex variables, electronics, mechanics, physics, and other areas of mathematical study.


Solving Ordinary Differential Equations I

Solving Ordinary Differential Equations I

Author: Ernst Hairer

Publisher: Springer Science & Business Media

Published: 2008-04-03

Total Pages: 541

ISBN-13: 354078862X

DOWNLOAD EBOOK

This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory, and the second chapter includes a modern treatment of Runge-Kutta and extrapolation methods. Chapter three begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. The reader will benefit from many illustrations, a historical and didactic approach, and computer programs which help him/her learn to solve all kinds of ordinary differential equations. This new edition has been rewritten and new material has been included.


Solving Partial Differential Equation Applications with PDE2D

Solving Partial Differential Equation Applications with PDE2D

Author: Granville Sewell

Publisher: John Wiley & Sons

Published: 2018-10-09

Total Pages: 224

ISBN-13: 1119507936

DOWNLOAD EBOOK

Solve engineering and scientific partial differential equation applications using the PDE2D software developed by the author Solving Partial Differential Equation Applications with PDE2D derives and solves a range of ordinary and partial differential equation (PDE) applications. This book describes an easy-to-use, general purpose, and time-tested PDE solver developed by the author that can be applied to a wide variety of science and engineering problems. The equations studied include many time-dependent, steady-state and eigenvalue applications such as diffusion, heat conduction and convection, image processing, math finance, fluid flow, and elasticity and quantum mechanics, in one, two, and three space dimensions. The author begins with some simple "0D" problems that give the reader an opportunity to become familiar with PDE2D before proceeding to more difficult problems. The book ends with the solution of a very difficult nonlinear problem, which requires a moving adaptive grid because the solution has sharp, moving peaks. This important book: Describes a finite-element program, PDE2D, developed by the author over the course of 40 years Derives the ordinary and partial differential equations, with appropriate initial and boundary conditions, for a wide variety of applications Offers free access to the Windows version of the PDE2D software through the author’s website at www.pde2d.com Offers free access to the Linux and MacOSX versions of the PDE2D software also, for instructors who adopt the book for their course and contact the author at www.pde2d.com Written for graduate applied mathematics or computational science classes, Solving Partial Differential Equation Applications with PDE2D offers students the opportunity to actually solve interesting engineering and scientific applications using the accessible PDE2D.


Solving Ordinary Differential Equations II

Solving Ordinary Differential Equations II

Author: Ernst Hairer

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 615

ISBN-13: 3662099470

DOWNLOAD EBOOK

"Whatever regrets may be, we have done our best." (Sir Ernest Shackleton, turning back on 9 January 1909 at 88°23' South.) Brahms struggled for 20 years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short. This second volume treats stiff differential equations and differential alge braic equations. It contains three chapters: Chapter IV on one-step (Runge Kutta) methods for stiff problems, Chapter Von multistep methods for stiff problems, and Chapter VI on singular perturbation and differential-algebraic equations. Each chapter is divided into sections. Usually the first sections of a chapter are of an introductory nature, explain numerical phenomena and exhibit numerical results. Investigations of a more theoretieal nature are presented in the later sections of each chapter. As in Volume I, the formulas, theorems, tables and figures are numbered consecutively in each section and indicate, in addition, the section num ber. In cross references to other chapters the (latin) chapter number is put first. References to the bibliography are again by "author" plus "year" in parentheses. The bibliography again contains only those papers which are discussed in the text and is in no way meant to be complete.


Handbook of Differential Equations

Handbook of Differential Equations

Author: Daniel Zwillinger

Publisher: Gulf Professional Publishing

Published: 1998

Total Pages: 842

ISBN-13: 9780127843964

DOWNLOAD EBOOK

This book compiles the most widely applicable methods for solving and approximating differential equations. as well as numerous examples showing the methods use. Topics include ordinary differential equations, symplectic integration of differential equations, and the use of wavelets when numerically solving differential equations. For nearly every technique, the book provides: The types of equations to which the method is applicable The idea behind the method The procedure for carrying out the method At least one simple example of the method Any cautions that should be exercised Notes for more advanced users References to the literature for more discussion or more examples, including pointers to electronic resources, such as URLs


Problems on Partial Differential Equations

Problems on Partial Differential Equations

Author: Maciej Borodzik

Publisher: Springer

Published: 2019-05-07

Total Pages: 260

ISBN-13: 3030147347

DOWNLOAD EBOOK

This book covers a diverse range of topics in Mathematical Physics, linear and nonlinear PDEs. Though the text reflects the classical theory, the main emphasis is on introducing readers to the latest developments based on the notions of weak solutions and Sobolev spaces. In numerous problems, the student is asked to prove a given statement, e.g. to show the existence of a solution to a certain PDE. Usually there is no closed-formula answer available, which is why there is no answer section, although helpful hints are often provided. This textbook offers a valuable asset for students and educators alike. As it adopts a perspective on PDEs that is neither too theoretical nor too practical, it represents the perfect companion to a broad spectrum of courses.