Differential Algebra, Complex Analysis and Orthogonal Polynomials

Differential Algebra, Complex Analysis and Orthogonal Polynomials

Author: Primitivo B. Acosta Humanez

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 241

ISBN-13: 0821848860

DOWNLOAD EBOOK

Presents the 2007-2008 Jairo Charris Seminar in Algebra and Analysis on Differential Algebra, Complex Analysis and Orthogonal Polynomials, which was held at the Universidad Sergio Arboleda in Bogota, Colombia.


Orthogonal Polynomials of Several Variables

Orthogonal Polynomials of Several Variables

Author: Charles F. Dunkl

Publisher: Cambridge University Press

Published: 2014-08-21

Total Pages: 439

ISBN-13: 1107071895

DOWNLOAD EBOOK

Updated throughout, this revised edition contains 25% new material covering progress made in the field over the past decade.


Orthogonal Polynomials

Orthogonal Polynomials

Author: Gabor Szegš

Publisher: American Mathematical Soc.

Published: 1939-12-31

Total Pages: 448

ISBN-13: 0821810235

DOWNLOAD EBOOK

The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.


Orthogonal Polynomials and Special Functions

Orthogonal Polynomials and Special Functions

Author: Francisco Marcellàn

Publisher: Springer Science & Business Media

Published: 2006-06-19

Total Pages: 432

ISBN-13: 3540310622

DOWNLOAD EBOOK

Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.


Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena

Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena

Author: Norske videnskaps-akademi. Research Program on Nonlinear Partial Differential Equations

Publisher: American Mathematical Soc.

Published: 2010-10-01

Total Pages: 402

ISBN-13: 082184976X

DOWNLOAD EBOOK

This volume presents the state of the art in several directions of research conducted by renowned mathematicians who participated in the research program on Nonlinear Partial Differential Equations at the Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway, during the academic year 2008-09. The main theme of the volume is nonlinear partial differential equations that model a wide variety of wave phenomena. Topics discussed include systems of conservation laws, compressible Navier-Stokes equations, Navier-Stokes-Korteweg type systems in models for phase transitions, nonlinear evolution equations, degenerate/mixed type equations in fluid mechanics and differential geometry, nonlinear dispersive wave equations (Korteweg-de Vries, Camassa-Holm type, etc.), and Poisson interface problems and level set formulations.


Symmetries and Related Topics in Differential and Difference Equations

Symmetries and Related Topics in Differential and Difference Equations

Author: David Blázquez-Sanz

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 178

ISBN-13: 0821868721

DOWNLOAD EBOOK

The papers collected here discuss topics such as Lie symmetries, equivalence transformations and differential invariants, group theoretical methods in linear equations, and the development of some geometrical methods in theoretical physics. The reader will find new results in symmetries of differential and difference equations, applications in classical and quantum mechanics, two fundamental problems of theoretical mechanics, and the mathematical nature of time in Lagrangian mechanics.


Nonlinear Elliptic Partial Differential Equations

Nonlinear Elliptic Partial Differential Equations

Author: J. P. Gossez

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 278

ISBN-13: 0821849077

DOWNLOAD EBOOK

This volume contains papers on semi-linear and quasi-linear elliptic equations from the workshop on Nonlinear Elliptic Partial Differential Equations, in honor of Jean-Pierre Gossez's 65th birthday, held September 2-4, 2009 at the Universite Libre de Bruxelles, Belgium. The workshop reflected Gossez's contributions in nonlinear elliptic PDEs and provided an opening to new directions in this very active research area. Presentations covered recent progress in Gossez's favorite topics, namely various problems related to the $p$-Laplacian operator, the antimaximum principle, the Fucik Spectrum, and other related subjects. This volume will be of principle interest to researchers in nonlinear analysis, especially in partial differential equations of elliptic type.


Arithmetic, Geometry, Cryptography and Coding Theory 2009

Arithmetic, Geometry, Cryptography and Coding Theory 2009

Author: David R. Kohel

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 178

ISBN-13: 0821849557

DOWNLOAD EBOOK

This volume contains the proceedings of the 12th conference on Arithmetic, Geometry, Cryptography and Coding Theory, held in Marseille, France from March 30 to April 3, 2009, as well as the first Geocrypt conference, held in Pointe-a-Pitre, Guadeloupe from April 27 to May 1, 2009, and the European Science Foundation exploratory workshop on Curves, Coding Theory, and Cryptography, held in Marseille, France from March 25 to 29, 2009. The articles contained in this volume come from three related symposia organized by the group Arithmetique et Theorie de l'Information in Marseille. The topics cover arithmetic properties of curves and higher dimensional varieties with applications to codes and cryptography.