Mathematical Physics with Partial Differential Equations

Mathematical Physics with Partial Differential Equations

Author: James Kirkwood

Publisher: Academic Press

Published: 2012-01-20

Total Pages: 431

ISBN-13: 0123869110

DOWNLOAD EBOOK

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.


A Course in Modern Mathematical Physics

A Course in Modern Mathematical Physics

Author: Peter Szekeres

Publisher: Cambridge University Press

Published: 2004-12-16

Total Pages: 620

ISBN-13: 9780521829601

DOWNLOAD EBOOK

This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.


Methods for Solving Mathematical Physics Problems

Methods for Solving Mathematical Physics Problems

Author: Valeriĭ Ivanovich Agoshkov

Publisher: Cambridge Int Science Publishing

Published: 2006

Total Pages: 335

ISBN-13: 1904602053

DOWNLOAD EBOOK

The aim of the book is to present to a wide range of readers (students, postgraduates, scientists, engineers, etc.) basic information on one of the directions of mathematics, methods for solving mathematical physics problems. The authors have tried to select for the book methods that have become classical and generally accepted. However, some of the current versions of these methods may be missing from the book because they require special knowledge. The book is of the handbook-teaching type. On the one hand, the book describes the main definitions, the concepts of the examined methods and approaches used in them, and also the results and claims obtained in every specific case. On the other hand, proofs of the majority of these results are not presented and they are given only in the simplest (methodological) cases. Another special feature of the book is the inclusion of many examples of application of the methods for solving specific mathematical physics problems of applied nature used in various areas of science and social activity, such as power engineering, environmental protection, hydrodynamics, elasticity theory, etc. This should provide additional information on possible applications of these methods. To provide complete information, the book includes a chapter dealing with the main problems of mathematical physics, together with the results obtained in functional analysis and boundary-value theory for equations with partial derivatives.


Mathematical Physics

Mathematical Physics

Author: Sadri Hassani

Publisher: Springer Science & Business Media

Published: 2002-02-08

Total Pages: 1052

ISBN-13: 9780387985794

DOWNLOAD EBOOK

For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.


Mathematical Methods

Mathematical Methods

Author: Sadri Hassani

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 673

ISBN-13: 038721562X

DOWNLOAD EBOOK

Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.


The Theory of Difference Schemes

The Theory of Difference Schemes

Author: Alexander A. Samarskii

Publisher: CRC Press

Published: 2001-03-29

Total Pages: 796

ISBN-13: 9780203908518

DOWNLOAD EBOOK

The Theory of Difference Schemes emphasizes solutions to boundary value problems through multiple difference schemes. It addresses the construction of approximate numerical methods and computer algorithms for solving mathematical physics problems. The book also develops mathematical models for obtaining desired solutions in minimal time using direct or iterative difference equations. Mathematical Reviews said it is "well-written [and] an excellent book, with a wealth of mathematical material and techniques."


Numerical Methods for Solving Inverse Problems of Mathematical Physics

Numerical Methods for Solving Inverse Problems of Mathematical Physics

Author: A. A. Samarskii

Publisher: Walter de Gruyter

Published: 2008-08-27

Total Pages: 453

ISBN-13: 3110205793

DOWNLOAD EBOOK

The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.


Kernel Functions and Elliptic Differential Equations in Mathematical Physics

Kernel Functions and Elliptic Differential Equations in Mathematical Physics

Author: Stefan Bergman

Publisher: Courier Corporation

Published: 2005-09-01

Total Pages: 450

ISBN-13: 0486445534

DOWNLOAD EBOOK

This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.


Methods for Solving Inverse Problems in Mathematical Physics

Methods for Solving Inverse Problems in Mathematical Physics

Author: Global Express Ltd. Co.

Publisher: CRC Press

Published: 2000-03-21

Total Pages: 736

ISBN-13: 9780824719876

DOWNLOAD EBOOK

Developing an approach to the question of existence, uniqueness and stability of solutions, this work presents a systematic elaboration of the theory of inverse problems for all principal types of partial differential equations. It covers up-to-date methods of linear and nonlinear analysis, the theory of differential equations in Banach spaces, applications of functional analysis, and semigroup theory.