Development of Very High-density Low-enriched Uranium Fuels

Development of Very High-density Low-enriched Uranium Fuels

Author:

Publisher:

Published: 1997

Total Pages: 5

ISBN-13:

DOWNLOAD EBOOK

The RERTR program has recently begun an aggressive effort to develop dispersion fuels for research and test reactors with uranium densities of 8 to 9 g U/cm3, based on the use of [gamma]-stabilized uranium alloys. Fabrication development teams and facilities are being put into place and preparations for the first irradiation test are in progress. The first screening irradiations are expected to begin in late April 1997 and first results should be available by end of 1997. Discussions with potential international partners in fabrication development and irradiation testing have begun.


Progress in Developing Very-high-density Low-enriched-uranium Fuels

Progress in Developing Very-high-density Low-enriched-uranium Fuels

Author:

Publisher:

Published: 1999

Total Pages: 9

ISBN-13:

DOWNLOAD EBOOK

Preliminary results from the postirradiation examinations of microplates irradiated in the RERTR-1 and -2 experiments in the ATR have shown several binary and ternary U-MO alloys to be promising candidates for use in aluminum-based dispersion fuels with uranium densities up to 8 to 9 g/cm3. Ternary alloys of uranium, niobium, and zirconium performed poorly, however, both in terms of fuel/matrix reaction and fission-gas-bubble behavior, and have been dropped from further study. Since irradiation temperatures achieved in the present experiments (approximately 70 C) are considerably lower than might be experienced in a high-performance reactor, a new experiment is being planned with beginning-of-cycle temperatures greater than 200 C in 8-g U/cm3 fuel.


Prospects of Stable High-density Dispersion Fuels

Prospects of Stable High-density Dispersion Fuels

Author:

Publisher:

Published: 1987

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The majority of research and test reactors around the world employ aluminum fuel element designs that contain dispersed powders of uranium compounds as fuel. Specifically, two compounds are used: (1) uranium oxide (U3O) and (2) an uranium aluminide mixed phase composed of the intermetallic compounds UAl2, UAl3, and UAl4, all made with highly enriched uranium (HEU), i.e., 93% 235U. The reduction of 235U enrichment to below 20%, to so-called low enriched uranium (LEU), requires the use of higher density fuels for those applications where increased fuel loading is not feasible. Fuel dispersant loading is, in practice, limited to approximately 45 vol %. Fuel development in the Reduced Envichment Research and Test Reactors (RERTR) program has focused on uranium silicides (U3Si and U3Si2) as the most promising high-density fuels. The compounds of U6Fe and U6Mn as well as U3Si containing Cu were tested as part of the search for stable very-high-density fuels. The problem of breakaway swelling in high-density fuel compounds is attributed to radiation-induced amorphization of these compounds. Alloy additions are a possible means by which the crystal structure of very-high-density compounds can be strengthened and preserved to high irradiation doses. Tailoring metallurgical treatment during fabrication, to avoid thermodynamically weak compounds, appears promising for certain compound combinations. 5 refs., 2 figs.


Medical Isotope Production Without Highly Enriched Uranium

Medical Isotope Production Without Highly Enriched Uranium

Author: National Research Council

Publisher: National Academies Press

Published: 2009-06-27

Total Pages: 220

ISBN-13: 0309130395

DOWNLOAD EBOOK

This book is the product of a congressionally mandated study to examine the feasibility of eliminating the use of highly enriched uranium (HEU2) in reactor fuel, reactor targets, and medical isotope production facilities. The book focuses primarily on the use of HEU for the production of the medical isotope molybdenum-99 (Mo-99), whose decay product, technetium-99m3 (Tc-99m), is used in the majority of medical diagnostic imaging procedures in the United States, and secondarily on the use of HEU for research and test reactor fuel. The supply of Mo-99 in the U.S. is likely to be unreliable until newer production sources come online. The reliability of the current supply system is an important medical isotope concern; this book concludes that achieving a cost difference of less than 10 percent in facilities that will need to convert from HEU- to LEU-based Mo-99 production is much less important than is reliability of supply.


High-density Reduced-enrichment Fuels for Research and Test Reactors

High-density Reduced-enrichment Fuels for Research and Test Reactors

Author:

Publisher:

Published: 1983

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Development and irradiation testing of high-density fuels have been conducted by the US RERTR Program in order to provide the technical means to reduce the enrichment of fuels for research and test reactors. The traditional aluminum dispersion fuel technology has been extended to include the highest practical loadings of uranium-aluminide (UAl(subscript x), 2.3 MgU/m3), uranium-oxide (U3O, 3.2 MgU/m3), and uranium-silicide (U3Si2, 5.5 MgU/m3; U3Si, 7.0 MgU/m3) fuels. A third uranium-silicide alloy, U3SiAl (U + 3.5 wt % Si + 1.5 wt % Al) has been found to perform poorly at high burnup. Testing of miniature fuel plates and full-sized fuel elements is at an advanced stage for the highest loadings of the aluminide and oxide fuels and intermediate loadings of the silicide fuels, and good results have been obtained for low-enriched uranium. The data obtained to date are discussed. 1 reference, 3 figures, 1 table.


Uranium Enrichment and Nuclear Weapon Proliferation

Uranium Enrichment and Nuclear Weapon Proliferation

Author: Allan S. Krass

Publisher: Routledge

Published: 2020-11-20

Total Pages: 325

ISBN-13: 100020054X

DOWNLOAD EBOOK

Originally published in 1983, this book presents both the technical and political information necessary to evaluate the emerging threat to world security posed by recent advances in uranium enrichment technology. Uranium enrichment has played a relatively quiet but important role in the history of efforts by a number of nations to acquire nuclear weapons and by a number of others to prevent the proliferation of nuclear weapons. For many years the uranium enrichment industry was dominated by a single method, gaseous diffusion, which was technically complex, extremely capital-intensive, and highly inefficient in its use of energy. As long as this remained true, only the richest and most technically advanced nations could afford to pursue the enrichment route to weapon acquisition. But during the 1970s this situation changed dramatically. Several new and far more accessible enrichment techniques were developed, stimulated largely by the anticipation of a rapidly growing demand for enrichment services by the world-wide nuclear power industry. This proliferation of new techniques, coupled with the subsequent contraction of the commercial market for enriched uranium, has created a situation in which uranium enrichment technology might well become the most important contributor to further nuclear weapon proliferation. Some of the issues addressed in this book are: A technical analysis of the most important enrichment techniques in a form that is relevant to analysis of proliferation risks; A detailed projection of the world demand for uranium enrichment services; A summary and critique of present institutional non-proliferation arrangements in the world enrichment industry, and An identification of the states most likely to pursue the enrichment route to acquisition of nuclear weapons.


Conceptual Process for the Manufacture of Low-Enriched Uranium

Conceptual Process for the Manufacture of Low-Enriched Uranium

Author:

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the bounds of known technology and are adaptable to the high-volume production required to process (almost equal to) 2.5 to 4 tons of U/Mo and produce (almost equal to)16,000 flat plates for U.S. reactors annually ((almost equal to)10,000 of which are needed for HFIR operations). The reference flow sheet is not intended to necessarily represent the best or the most economical way to manufacture a LEU foil fuel for HFIR but simply represents a 'snapshot' in time of technology and is intended to identify the process steps that will likely be required to manufacture a foil fuel. Changes in some of the process steps selected for the reference flow sheet are inevitable; however, no one step or series of steps dominates the overall flow sheet requirements. A result of conceptualizing a reference flow sheet was the identification of the greater number of steps required for a foil process when compared to the dispersion fuel process. Additionally, in most of the foil processing steps, bare uranium must be handled, increasing the complexity of these processing areas relative to current operations. Based on a likely total cost of a few hundred million dollars for a new facility, it is apparent that line item funding will be necessary and could take as much as 8 to 10 years to complete. The infrastructure cost could exceed $100M.


Impact of Fuel Density on Performance and Economy of Research Reactors

Impact of Fuel Density on Performance and Economy of Research Reactors

Author: International Atomic Energy Agency

Publisher:

Published: 2021

Total Pages: 84

ISBN-13: 9789201203205

DOWNLOAD EBOOK

Research reactor fuel technology continues to evolve, driven in part by international efforts to develop high density fuels to enable the conversion of more reactors from highly enriched uranium (HEU) to low enriched uranium (LEU) fuels. These high density fuels may offer economic benefits for research reactors, despite being more expensive initially, because they offer the prospect of higher per-assembly burnup, thus reducing the number of assemblies that must be procured, and more flexibility in terms of spent fuel management compared to the currently qualified and commercially available LEU silicide fuels. Additionally, these new fuels may offer better performance characteristics. This publication provides a preliminary evaluation of the impacts on research reactor performance and fuel costs from using high density fuel. Several case studies are presented and compared to illustrate these impacts.