Development of Numerical Models of Vertical Ground Heat Exchangers and Experimental Verification

Development of Numerical Models of Vertical Ground Heat Exchangers and Experimental Verification

Author: Eui-Jong Kim

Publisher:

Published: 2011

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Ground-source heat pump systems with vertical ground heat exchangers (GHE) are gaining popularity worldwide for their higher coefficients of performance and lower CO2 emissions. However, the higher initial cost of installing the borehole GHEs is a main obstacle to spread the systems. To reduce the required total GHE length and efficiently operate the systems, various systems such as hybrid ones (e.g. solar heat injection) have recently been introduced. Accurate prediction of heat transfer in and around boreholes of such systems is crucial to avoid costly overdesigns or catastrophic failures of undersized systems as it is for typical GCHP systems. However, unlike the traditional sizing methods, it is increasingly required to take into account detailed borehole configuration and transient effects (e.g. short circuit effects between U-tubes). Many of the existing GHE models have been reviewed. Some of these models have serious limitations when it comes to transient heat transfer, particularly in the borehole itself. Accordingly, the objective of this thesis is to develop a model that is capable to accurately predict thermal behaviors of the GHEs. A precise response to input variations even in a short time-step is also expected in the model. The model also has to account for a correct temperature and flux distribution between the U-tubes and inside the borehole that seems to be important in the solar heat injection case. Considering these effects in 3D with a detailed mesh used for describing the borehole configurations is normally time-consuming. This thesis attempts to alleviate the calculation time using state model reduction techniques that use fewer modes for a fast calculation but predict similar results. Domain decomposition is also envisaged to sub-structure the domain and vary the time-step sizes. Since the decomposed domains should be coupled one another spatially as well as temporally, new coupling methods are proposed and validated particularly in the FEM. For the simulation purpose, a hybrid model (HM) is developed that combines a numerical solution, the same one as the 3D-RM but only for the borehole, and well-known analytical ones for a fast calculation. An experimental facility used for validation of the model has been built and is described. A comparison with the experimental results shows that the relatively fast transients occurring in the borehole are well predicted not only for the outlet fluid temperature but also for the grout temperatures at different depths even in very short time-steps. Even though the current version of 3D-RM is experimentally validated, it is still worth optimizing the model in terms of the computational time. Further simulations with the 3D-RM are expected to be carried out to estimate the performance of new hybrid systems and propose its appropriate sizing with correspondent thermal impacts on the ground. Finally, the development of the model 3D-RM can be an initiation to accurately model various types of GHE within an acceptable calculation time.


Heat Exchangers

Heat Exchangers

Author: S. M. Sohel Murshed

Publisher: BoD – Books on Demand

Published: 2017-04-27

Total Pages: 274

ISBN-13: 9535130935

DOWNLOAD EBOOK

Presenting contributions from renowned experts in the field, this book covers research and development in fundamental areas of heat exchangers, which include: design and theoretical development, experiments, numerical modeling and simulations. This book is intended to be a useful reference source and guide to researchers, postgraduate students, and engineers in the fields of heat exchangers, cooling, and thermal management.


Numerical Methods for Diffusion Phenomena in Building Physics

Numerical Methods for Diffusion Phenomena in Building Physics

Author: Nathan Mendes

Publisher: Springer Nature

Published: 2019-11-29

Total Pages: 253

ISBN-13: 3030315746

DOWNLOAD EBOOK

This book is the second edition of Numerical methods for diffusion phenomena in building physics: a practical introduction originally published by PUCPRESS (2016). It intends to stimulate research in simulation of diffusion problems in building physics, by providing an overview of mathematical models and numerical techniques such as the finite difference and finite-element methods traditionally used in building simulation tools. Nonconventional methods such as reduced order models, boundary integral approaches and spectral methods are presented, which might be considered in the next generation of building-energy-simulation tools. In this reviewed edition, an innovative way to simulate energy and hydrothermal performance are presented, bringing some light on innovative approaches in the field.


Designing Engineering Structures using Stochastic Optimization Methods

Designing Engineering Structures using Stochastic Optimization Methods

Author: Levent Aydin

Publisher: CRC Press

Published: 2020-04-27

Total Pages: 172

ISBN-13: 1000095916

DOWNLOAD EBOOK

Among all aspects of engineering, design is the most important step in developing a new product. A systematic approach to managing design issues can only be accomplished by applying mathematical optimization methods. Furthermore, due to the practical issues in engineering problems, there are limitations in using traditional methods. As such, stochastic optimization methods such as differential evolution, simulated annealing, and genetic algorithms are preferable in finding solutions in design optimization problems. This book reviews mechanical engineering design optimization using stochastic methods. It introduces students and design engineers to practical aspects of complicated mathematical optimization procedures, and outlines steps for wide range of selected engineering design problems. It shows how engineering structures are systematically designed. Many new engineering design applications based on stochastic optimization techniques in automotive, energy, military, naval, manufacturing process and fluids-heat transfer, are described in the book. For each design optimization problem described, background is provided for understanding the solutions. There are very few books on optimization that include engineering applications. They cover limited applications, and that too of well-known design problems of advanced and niche nature. Common problems are hardly addressed. Thus, the subject has remained fairly theoretical. To overcome this, each chapter in this book is contributed by at least one academic and one industrial expert researcher.


Geothermal Energy

Geothermal Energy

Author: Marc A. Rosen

Publisher: John Wiley & Sons

Published: 2017-01-30

Total Pages: 307

ISBN-13: 1119180988

DOWNLOAD EBOOK

Comprehensively covers geothermal energy systems that utilize ground energy in conjunction with heat pumps to provide sustainable heating and cooling The book describes geothermal energy systems that utilize ground energy in conjunction with heat pumps and related technologies to provide heating and cooling. Also discussed are methods to model and assess such systems, as well as means to determine potential environmental impacts of geothermal energy systems and their thermal interaction. The book presents the most up-to-date information in the area. It provides material on a range of topics, from thermodynamic concepts to more advanced discussions of the renewability and sustainability of geothermal energy systems. Numerous applications of such systems are also provided. Geothermal Energy: Sustainable Heating and Cooling Using the Ground takes a research orientated approach to provide coverage of the state of the art and emerging trends, and includes numerous illustrative examples and case studies. Theory and analysis are emphasized throughout, with detailed descriptions of models available for vertical and horizontal geothermal heat exchangers. Key features: Explains geothermal energy systems that utilize ground energy in conjunction with heat pumps to provide heating and cooling, as well as related technologies such as thermal energy storage. Describes and discusses methods to model and analyze geothermal energy systems, and to determine their potential environmental impacts and thermal interactions. Covers various applications of geothermal energy systems. Takes a research orientated approach to provide coverage of the state of the art and emerging trends. Includes numerous illustrative examples and case studies. The book is key for researchers and practitioners working in geothermal energy, as well as graduate and advanced undergraduate students in departments of mechanical, civil, chemical, energy, environmental, process and industrial engineering.


Numerical Modelling and Experimental Testing of Heat Exchangers

Numerical Modelling and Experimental Testing of Heat Exchangers

Author: Dawid Taler

Publisher: Springer

Published: 2018-05-17

Total Pages: 598

ISBN-13: 3319911287

DOWNLOAD EBOOK

This book presents new methods of numerical modelling of tube heat exchangers, which can be used to perform design and operation calculations of exchangers characterized by a complex flow system. It also proposes new heat transfer correlations for laminar, transition and turbulent flows. A large part of the book is devoted to experimental testing of heat exchangers, and methods for assessing the indirect measurement uncertainty are presented. Further, it describes a new method for parallel determination of the Nusselt number correlations on both sides of the tube walls based on the nonlinear least squares method and presents the application of computational fluid dynamic (CFD) modeling to determine the air-side Nusselt number correlations. Lastly, it develops a control system based on the mathematical model of the car radiator and compares this with the digital proportional-integral-derivative (PID) controller. The book is intended for students, academics and researchers, as well as for designers and manufacturers of heat exchangers.


Design of Heat Exchangers for Heat Pump Applications

Design of Heat Exchangers for Heat Pump Applications

Author: Marco Fossa

Publisher: MDPI

Published: 2020-12-28

Total Pages: 172

ISBN-13: 3039435132

DOWNLOAD EBOOK

Heat pumps (HPs) allow for providing heat without direct combustion, in both civil and industrial applications. They are very efficient systems that, by exploiting electrical energy, greatly reduce local environmental pollution and CO2 global emissions. The fact that electricity is a partially renewable resource and because the coefficient of performance (COP) can be as high as four or more, means that HPs can be nearly carbon neutral for a full sustainable future. The proper selection of the heat source and the correct design of the heat exchangers is crucial for attaining high HP efficiencies. Heat exchangers (also in terms of HP control strategies) are hence one of the main elements of HPs, and improving their performance enhances the effectiveness of the whole system. Both the heat transfer and pressure drop have to be taken into account for the correct sizing, especially in the case of mini- and micro-geometries, for which traditional models and correlations can not be applied. New models and measurements are required for best HPs system design, including optimization strategies for energy exploitation, temperature control, and mechanical reliability. Thus, a multidisciplinary approach of the analysis is requested and become the future challenge.


Performance Characterization of Shallow Helical Ground Heat Exchangers for Ground Source Heat Pump Applications

Performance Characterization of Shallow Helical Ground Heat Exchangers for Ground Source Heat Pump Applications

Author: Francisco Javier Alvarez Revenga

Publisher:

Published: 2016

Total Pages: 148

ISBN-13:

DOWNLOAD EBOOK

The use of the ground as heat source or sink medium for heating and cooling the human built environment has the potential of saving energy and reducing greenhouse gas emissions significantly. One of the main components of this system is the heat exchanger that is buried in the ground. This thesis explores the performance of a specific type of ground heat exchanger (GHE): the shallow vertical helical GHE. This type of GHE occupies considerably less land when compared to horizontal configurations and are less influenced by outdoor temperature and weather conditions. When compared to traditional deep vertical U-tube probes, savings on drilling costs can be significant. However, performance data and design information is limited for these types of heat exchangers, which has limited their adoption amongst ground source heat pump (GSHP) system designers and installers. Various in-situ heating and cooling tests were performed at a residence in Bozeman, Montana, with a system containing three helical GHEs. The heat exchangers are coupled with a GSHP with variable capacity compressors. Moreover, a recently developed numerical model (named CaRM-He) was used to compare the experimental results with the simulated performance. The model is based on the analogy between thermal and electrical phenomena, where the domain (comprised of GHE, surrounding ground, grouting material, and heat carrier fluid) is discretized as a linked network of thermal nodes with thermal capacitances and resistances. Heat exchanger outlet temperature as predicted by CaRM-He model was compared with experimental data, resulting in different degrees of accuracy. This research presents a method to characterize the performance of these types of GHEs, and a comprehensive analysis of uncertainties and sources of error inherent to in-situ testing. Also, it is recommended that the model is improved to include extraneous heat inputs and horizontal runs. Still however, the advantages of this ground coupling method and the possibility to predict its performance make the helical GHE an interesting alternative for the geothermal designer.


Numerical Simulation of Heat Exchangers

Numerical Simulation of Heat Exchangers

Author: W. J. Minkowycz

Publisher: CRC Press

Published: 2017-04-07

Total Pages: 230

ISBN-13: 1482250209

DOWNLOAD EBOOK

This book deals with certain aspects of material science, particularly with the release of thermal energy associated with bond breaking. It clearly establishes the connection between heat transfer rates and product quality. The editors then sharply draw the thermal distinctions between the various categories of welding processes, and demonstrate how these distinctions are translated into simulation model uniqueness. The book discusses the incorporation of radiative heat transfer processes into the simulation model.