Development of Memristor Based Circuits

Development of Memristor Based Circuits

Author: Herbert Ho-Ching Iu

Publisher: World Scientific

Published: 2013

Total Pages: 133

ISBN-13: 9814383384

DOWNLOAD EBOOK

Summary: "As memristors are not yet on the market, the development of memristor emulators and memristor based circuits is very important for real and practical engineering applications. The objectives of this book are to review the basic concepts of the memristor, describe state-of-the-art memristor based circuits and to stimulate further research and development in this area."--Preface.


Memristor-Based Nanoelectronic Computing Circuits and Architectures

Memristor-Based Nanoelectronic Computing Circuits and Architectures

Author: Ioannis Vourkas

Publisher: Springer

Published: 2015-08-26

Total Pages: 263

ISBN-13: 3319226479

DOWNLOAD EBOOK

This book considers the design and development of nanoelectronic computing circuits, systems and architectures focusing particularly on memristors, which represent one of today’s latest technology breakthroughs in nanoelectronics. The book studies, explores, and addresses the related challenges and proposes solutions for the smooth transition from conventional circuit technologies to emerging computing memristive nanotechnologies. Its content spans from fundamental device modeling to emerging storage system architectures and novel circuit design methodologies, targeting advanced non-conventional analog/digital massively parallel computational structures. Several new results on memristor modeling, memristive interconnections, logic circuit design, memory circuit architectures, computer arithmetic systems, simulation software tools, and applications of memristors in computing are presented. High-density memristive data storage combined with memristive circuit-design paradigms and computational tools applied to solve NP-hard artificial intelligence problems, as well as memristive arithmetic-logic units, certainly pave the way for a very promising memristive era in future electronic systems. Furthermore, these graph-based NP-hard problems are solved on memristive networks, and coupled with Cellular Automata (CA)-inspired computational schemes that enable computation within memory. All chapters are written in an accessible manner and are lavishly illustrated. The book constitutes an informative cornerstone for young scientists and a comprehensive reference to the experienced reader, hoping to stimulate further research on memristive devices, circuits, and systems.


On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor

On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor

Author: Ahmed G. Radwan

Publisher: Springer

Published: 2015-05-09

Total Pages: 244

ISBN-13: 3319174916

DOWNLOAD EBOOK

This book introduces the basic fundamentals, models, emulators and analyses of mem-elements in the circuit theory with applications. The book starts reviewing the literature on mem-elements, models and their recent applications. It presents mathematical models, numerical results, circuit simulations, and experimental results for double-loop hysteresis behavior of mem-elements. The authors introduce a generalized memristor model in the fractional-order domain under different input and different designs for emulator-based mem-elements, with circuit and experimental results. The basic concept of memristive-based relaxation-oscillators in the circuit theory is also covered. The reader will moreover find in this book information on memristor-based multi-level digital circuits, memristor-based multi-level multiplier and memcapacitor-based oscillators and synaptic circuits.


Nanoscale Memristor Device and Circuits Design

Nanoscale Memristor Device and Circuits Design

Author: Balwinder Raj

Publisher: Elsevier

Published: 2023-11-08

Total Pages: 254

ISBN-13: 0323998119

DOWNLOAD EBOOK

Nanoscale Memristor Device and Circuits Design provides theoretical frameworks, including (i) the background of memristors, (ii) physics of memristor and their modeling, (iii) menristive device applications, and (iv) circuit design for security and authentication. The book focuses on a broad aspect of realization of these applications as low cost and reliable devices. This is an important reference that will help materials scientists and engineers understand the production and applications of nanoscale memrister devices. A memristor is a two-terminal memory nanoscale device that stores information in terms of high/low resistance. It can retain information even when the power source is removed, i.e., "non-volatile." In contrast to MOS Transistors (MOST), which are the building blocks of all modern mobile and computing devices, memristors are relatively immune to radiation, as well as parasitic effects, such as capacitance, and can be much more reliable. This is extremely attractive for critical safety applications, such as nuclear and aerospace, where radiation can cause failure in MOST-based systems. - Outlines the major principles of circuit design for nanoelectronic applications - Explores major applications, including memristor-based memories, sensors, solar cells, or memristor-based hardware and software security applications - Assesses the major challenges to manufacturing nanoscale memristor devices at an industrial scale


Advances in Memristors, Memristive Devices and Systems

Advances in Memristors, Memristive Devices and Systems

Author: Sundarapandian Vaidyanathan

Publisher: Springer

Published: 2017-02-15

Total Pages: 513

ISBN-13: 3319517244

DOWNLOAD EBOOK

This book reports on the latest advances in and applications of memristors, memristive devices and systems. It gathers 20 contributed chapters by subject experts, including pioneers in the field such as Leon Chua (UC Berkeley, USA) and R.S. Williams (HP Labs, USA), who are specialized in the various topics addressed in this book, and covers broad areas of memristors and memristive devices such as: memristor emulators, oscillators, chaotic and hyperchaotic memristive systems, control of memristive systems, memristor-based min-max circuits, canonic memristors, memristive-based neuromorphic applications, implementation of memristor-based chaotic oscillators, inverse memristors, linear memristor devices, delayed memristive systems, flux-controlled memristive emulators, etc. Throughout the book, special emphasis is given to papers offering practical solutions and design, modeling, and implementation insights to address current research problems in memristors, memristive devices and systems. As such, it offers a valuable reference book on memristors and memristive devices for graduate students and researchers with a basic knowledge of electrical and control systems engineering.


Resistive Switching

Resistive Switching

Author: Daniele Ielmini

Publisher:

Published: 2016

Total Pages: 755

ISBN-13: 9783527680870

DOWNLOAD EBOOK

With its comprehensive coverage, this reference introduces readers to the wide topic of resistance switching, providing the knowledge, tools, and methods needed to understand, characterize and apply resistive switching memories. Starting with those materials that display resistive switching behavior, the book explains the basics of resistive switching as well as switching mechanisms and models. An in-depth discussion of memory reliability is followed by chapters on memory cell structures and architectures, while a section on logic gates rounds off the text. An invaluable self-contained book for materials scientists, electrical engineers and physicists dealing with memory research and development.


Memristors - The Fourth Fundamental Circuit Element - Theory, Device, and Applications

Memristors - The Fourth Fundamental Circuit Element - Theory, Device, and Applications

Author: Yao-Feng Chang

Publisher: BoD – Books on Demand

Published: 2024-06-12

Total Pages: 204

ISBN-13: 0854661670

DOWNLOAD EBOOK

This book presents excellent comprehensive and interdisciplinary research on memristor devices and their corresponding applications. The authors discuss a wide range of topics, including material and physical modeling, materials physics and analytics, devices in miniature scale, advanced functional circuits, high-speed computing systems and integration for logic applications, other novel emerging device concepts and circuit schemes, and much more.


Advances in Chaos Theory and Intelligent Control

Advances in Chaos Theory and Intelligent Control

Author: Ahmad Taher Azar

Publisher: Springer

Published: 2016-04-15

Total Pages: 869

ISBN-13: 3319303406

DOWNLOAD EBOOK

The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate students, researchers, and practitioners in the areas of chaos theory and intelligent control.


Memristor Computing Systems

Memristor Computing Systems

Author: Leon O. Chua

Publisher: Springer Nature

Published: 2022-06-23

Total Pages: 307

ISBN-13: 3030905829

DOWNLOAD EBOOK

This contributed volume offers practical solutions and design-, modeling-, and implementation-related insights that address current research problems in memristors, memristive devices, and memristor computing. The book studies and addresses related challenges in and proposes solutions for the future of memristor computing. State-of-the-art research on memristor modeling, memristive interconnections, memory circuit architectures, software simulation tools, and applications of memristors in computing are presented. Utilising contributions from numerous experts in the field, written in clear language and illustrated throughout, this book is a comprehensive reference work. Memristor Computing Systems explains memristors and memristive devices in an accessible way for graduate students and researchers with a basic knowledge of electrical and control systems engineering, as well as prompting further research for more experienced academics.