Developing Thinking in Algebra

Developing Thinking in Algebra

Author: John Mason

Publisher: Paul Chapman Educational Publishing

Published: 2005-04-23

Total Pages: 342

ISBN-13: 9781412911719

DOWNLOAD EBOOK

'Mason, Graham, and Johnston-Wilder have admirably succeeded in casting most of school algebra in terms of generalisation activity? not just the typical numerical and geometric pattern-based work, but also solving quadratics and simultaneous equations, graphing equations, and factoring. The authors raise our awareness of the scope of generalization and of the power of using this as a lens not just for algebra but for all of mathematics!' - Professor Carolyn Kieran, Departement de Mathematiques, Universite du Quebec a Montreal Algebra has always been a watershed for pupils learning mathematics. This book will enable you to think about yourself as a learner of algebra in a new way, and thus to teach algebra more successfully, overcoming difficulties and building upon skills that all learners have. This book is based on teaching principles developed by the team at The Open University's Centre for Mathematics Education which has a 20-year track record of innovative approaches to teaching and learning algebra. Written for teachers working with pupils aged 7-16, it includes numerous tasks ready for adaption for your teaching and discusses principles that teachers have found useful in preparing and conducting lessons. This is a 'must have' resource for all teachers of mathematics, primary or secondary, and their support staff. Anyone who wishes to create an understanding and enthusiasm for algebra, based upon firm research and effective practice, will enjoy this book. This book is the course reader for The Open University Course ME625 Developing Algebraic Thinking


Developing Thinking in Geometry

Developing Thinking in Geometry

Author: Sue Johnston-Wilder

Publisher: Paul Chapman Educational Publishing

Published: 2005-09-14

Total Pages: 300

ISBN-13: 9781412911696

DOWNLOAD EBOOK

"All readers can use this book to reignite their fascination with mathematics. Fosters not only a curiosity about geometry itself but crucially focuses on how learners can actively engage in thinking about geometry and its central key ideas."-Sylvia Johnson, Professor, Sheffield Hallam University"Exudes activity and interactivity. A book for learning geometry, learning to think more deeply about geometry, and also about its teaching and learning."-David Pimm, Professor, University of AlbertaDeveloping Thinking in Geometry enables teachers and their support staff to experience and teach geometric thinking. Discussing key teaching principles, the book and its accompanying interactive CD-ROM include many activities encouraging readers to extend their own learning, and teaching practices.Drawing on innovative approaches for teaching and learning geometry developed by the Open University's Centre for Mathematics Education, this resource is constructed around the following key themes:InvarianceLanguage and points of viewReasoning using invarianceVisualizing and representing


Developing Essential Understanding of Algebraic Thinking for Teaching Mathematics in Grades 3-5

Developing Essential Understanding of Algebraic Thinking for Teaching Mathematics in Grades 3-5

Author: Maria L. Blanton

Publisher:

Published: 2011

Total Pages: 102

ISBN-13: 9780873536684

DOWNLOAD EBOOK

Like algebra at any level, early algebra is a way to explore, analyse, represent and generalise mathematical ideas and relationships. This book shows that children can and do engage in generalising about numbers and operations as their mathematical experiences expand. The authors identify and examine five big ideas and associated essential understandings for developing algebraic thinking in grades 3-5. The big ideas relate to the fundamental properties of number and operations, the use of the equals sign to represent equivalence, variables as efficient tools for representing mathematical ideas, quantitative reasoning as a way to understand mathematical relationships and functional thinking to generalise relationships between covarying quantities. The book examines challenges in teaching, learning and assessment and is interspersed with questions for teachers’ reflection.


Thinking Mathematically

Thinking Mathematically

Author: Thomas P. Carpenter

Publisher: Heinemann Educational Books

Published: 2003

Total Pages: 166

ISBN-13:

DOWNLOAD EBOOK

In this book the authors reveal how children's developing knowledge of the powerful unifying ideas of mathematics can deepen their understanding of arithmetic


Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds

Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds

Author: Carolyn Kieran

Publisher: Springer

Published: 2017-12-04

Total Pages: 443

ISBN-13: 3319683519

DOWNLOAD EBOOK

This book highlights new developments in the teaching and learning of algebraic thinking with 5- to 12-year-olds. Based on empirical findings gathered in several countries on five continents, it provides a wealth of best practices for teaching early algebra. Building on the work of the ICME-13 (International Congress on Mathematical Education) Topic Study Group 10 on Early Algebra, well-known authors such as Luis Radford, John Mason, Maria Blanton, Deborah Schifter, and Max Stephens, as well as younger scholars from Asia, Europe, South Africa, the Americas, Australia and New Zealand, present novel theoretical perspectives and their latest findings. The book is divided into three parts that focus on (i) epistemological/mathematical aspects of algebraic thinking, (ii) learning, and (iii) teaching and teacher development. Some of the main threads running through the book are the various ways in which structures can express themselves in children’s developing algebraic thinking, the roles of generalization and natural language, and the emergence of symbolism. Presenting vital new data from international contexts, the book provides additional support for the position that essential ways of thinking algebraically need to be intentionally fostered in instruction from the earliest grades.


Connecting Arithmetic to Algebra

Connecting Arithmetic to Algebra

Author: Susan Jo Russell

Publisher: Heinemann Educational Books

Published: 2011

Total Pages: 0

ISBN-13: 9780325041919

DOWNLOAD EBOOK

"To truly engage in mathematics is to become curious and intrigued about regularities and patterns, then describe and explain them. A focus on the behavior of the operations allows students starting in the familiar territory of number and computation to progress to true engagement in the discipline of mathematics." -Susan Jo Russell, Deborah Schifter, and Virginia Bastable Algebra readiness: it's a topic of concern that seems to pervade every school district. How can we better prepare elementary students for algebra? More importantly, how can we help all children, not just those who excel in math, become ready for later instruction? The answer lies not in additional content, but in developing a way of thinking about the mathematics that underlies both arithmetic and algebra. Connecting Arithmetic to Algebra invites readers to learn about a crucial component of algebraic thinking: investigating the behavior of the operations. Nationally-known math educators Susan Jo Russell, Deborah Schifter, and Virginia Bastable and a group of collaborating teachers describe how elementary teachers can shape their instruction so that students learn to: *notice and describe consistencies across problems *articulate generalizations about the behavior of the operations *develop mathematical arguments based on representations to explain why such generalizations are or are not true. Through such work, students become familiar with properties and general rules that underlie computational strategies-including those that form the basis of strategies used in algebra-strengthening their understanding of grade-level content and at the same time preparing them for future studies. Each chapter is illustrated by lively episodes drawn from the classrooms of collaborating teachers in a wide range of settings. These provide examples of posing problems, engaging students in productive discussion, using representations to develop mathematical arguments, and supporting both students with a wide range of learning profiles. Staff Developers: Available online, the Course Facilitator's Guide provides math leaders with tools and resources for implementing a Connecting Arithmetic to Algebra workshop or preservice course. For information on the PD course offered through Mount Holyoke College, download the flyer.


Fostering Algebraic Thinking

Fostering Algebraic Thinking

Author: Mark J. Driscoll

Publisher: Heinemann Educational Books

Published: 1999

Total Pages: 176

ISBN-13:

DOWNLOAD EBOOK

Fostering Algebraic Thinking is a timely and welcome resource for middle and high school teachers hoping to ease their students' transition to algebra.


Early Algebraization

Early Algebraization

Author: Jinfa Cai

Publisher: Springer Science & Business Media

Published: 2011-02-24

Total Pages: 631

ISBN-13: 3642177352

DOWNLOAD EBOOK

In this volume, the authors address the development of students’ algebraic thinking in the elementary and middle school grades from curricular, cognitive, and instructional perspectives. The volume is also international in nature, thus promoting a global dialogue on the topic of early Algebraization.


Developing Mathematical Thinking

Developing Mathematical Thinking

Author: Jonathan D. Katz

Publisher: Rowman & Littlefield

Published: 2014-07-07

Total Pages: 145

ISBN-13: 147581058X

DOWNLOAD EBOOK

In this country we have done a poor job of helping students come to see the wonder, beauty and power of mathematics. Standards can be brought into the picture, but unless we think about what it means to truly engage students in mathematics we will continue to be unsuccessful. The goal of this book is to begin to change the way students experience mathematics in the middle and high school classrooms. In this book you will find a theoretical basis for this approach to teaching mathematics, multiple guides and questions for teachers to think about in relation to their everyday teaching, and over 30 examples of problems, lessons, tasks, and projects that been used effectively with urban students.


Approaches to Algebra

Approaches to Algebra

Author: N. Bednarz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 342

ISBN-13: 9400917325

DOWNLOAD EBOOK

In Greek geometry, there is an arithmetic of magnitudes in which, in terms of numbers, only integers are involved. This theory of measure is limited to exact measure. Operations on magnitudes cannot be actually numerically calculated, except if those magnitudes are exactly measured by a certain unit. The theory of proportions does not have access to such operations. It cannot be seen as an "arithmetic" of ratios. Even if Euclidean geometry is done in a highly theoretical context, its axioms are essentially semantic. This is contrary to Mahoney's second characteristic. This cannot be said of the theory of proportions, which is less semantic. Only synthetic proofs are considered rigorous in Greek geometry. Arithmetic reasoning is also synthetic, going from the known to the unknown. Finally, analysis is an approach to geometrical problems that has some algebraic characteristics and involves a method for solving problems that is different from the arithmetical approach. 3. GEOMETRIC PROOFS OF ALGEBRAIC RULES Until the second half of the 19th century, Euclid's Elements was considered a model of a mathematical theory. This may be one reason why geometry was used by algebraists as a tool to demonstrate the accuracy of rules otherwise given as numerical algorithms. It may also be that geometry was one way to represent general reasoning without involving specific magnitudes. To go a bit deeper into this, here are three geometric proofs of algebraic rules, the frrst by Al-Khwarizmi, the other two by Cardano.