Rock Stress and Its Measurement

Rock Stress and Its Measurement

Author: B. Amadei

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 524

ISBN-13: 9401153469

DOWNLOAD EBOOK

Rock masses are initially stressed in their current in situ state of stress and to a lesser natural state. Whether one is interested in the extent on the monitoring of stress change. formation of geological structures (folds, faults, The subject of paleostresses is only briefly intrusions, etc. ), the stability of artificial struc discussed. tures (tunnels, caverns, mines, surface excava The last 30 years have seen a major advance our knowledge and understanding of rock tions, etc. ), or the stability of boreholes, a in the in situ or virgin stress field, stress. A large body of data is now available on knowledge of along with other rock mass properties, is the state of stress in the near surface of the needed in order to predict the response of rock Earth's crust (upper 3-4km of the crust). masses to the disturbance associated with those Various theories have been proposed regarding structures. Stress in rock is usually described the origin of in situ stresses and how gravity, within the context of continuum mechanics. It is tectonics, erosion, lateral straining, rock fabric, defined at a point and is represented by a glaciation and deglaciation, topography, curva second-order Cartesian tensor with six compo ture of the Earth and other active geological nents. Because of its definition, rock stress is an features and processes contribute to the current enigmatic and fictitious quantity creating chal in situ stress field.


Rock Anisotropy and the Theory of Stress Measurements

Rock Anisotropy and the Theory of Stress Measurements

Author: Bernard Amadei

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 498

ISBN-13: 3642820409

DOWNLOAD EBOOK

Any undisturbed rock mass is subject to natural stresses inclu ding gravitational stresses due to the mass of the overburden and possibly tectonic stresses due to the straining of the earth's crust and remanent stresses due to past tectonism. Knowledge of the in situ stress field must be integrated into any rock engineering design along with general rock mass characteristics such as de for mability, strength, permeability and time dependent behavior. For example, the choice of optimum orientation and shape of deep underground caverns or complex underground works will be controlled by the orientation and the magnitude of the in situ stress @ield if it is necessary to minimize stress concentration problems. Long term variation of the in situ stress field may also help to evaluate the potential hazard of earthquake occurences. The magnitude and orientation of the stress field ata point within a rock mass can be measured but there is no known method by which the state of stress at a point can be accurately determined by instruments located remotely. In general, measurements are made inside boreholes, on outcrops or on the internal surfaces of under ground cavities. Most of the measuring techniques intentionally disturb the state of stress in the rock and then measure consequent strains and displacements. Measured strains or displacements are then related to the stresses through assumptions of material behavior. A common procedure is to assume that the rock mass is linearly elastic, isotropic, continuous and homogeneous.


Geologic Fracture Mechanics

Geologic Fracture Mechanics

Author: Richard A. Schultz

Publisher: Cambridge University Press

Published: 2019-08-08

Total Pages: 611

ISBN-13: 1107189993

DOWNLOAD EBOOK

Introduction to geologic fracture mechanics covering geologic structural discontinuities from theoretical and field-based perspectives.


Physical Geology

Physical Geology

Author: Steven Earle

Publisher:

Published: 2016-08-12

Total Pages: 628

ISBN-13: 9781537068824

DOWNLOAD EBOOK

This is a discount Black and white version. Some images may be unclear, please see BCCampus website for the digital version.This book was born out of a 2014 meeting of earth science educators representing most of the universities and colleges in British Columbia, and nurtured by a widely shared frustration that many students are not thriving in courses because textbooks have become too expensive for them to buy. But the real inspiration comes from a fascination for the spectacular geology of western Canada and the many decades that the author spent exploring this region along with colleagues, students, family, and friends. My goal has been to provide an accessible and comprehensive guide to the important topics of geology, richly illustrated with examples from western Canada. Although this text is intended to complement a typical first-year course in physical geology, its contents could be applied to numerous other related courses.


Stress Field of the Earth's Crust

Stress Field of the Earth's Crust

Author: Arno Zang

Publisher: Springer Science & Business Media

Published: 2009-12-06

Total Pages: 327

ISBN-13: 1402084447

DOWNLOAD EBOOK

Stress Field of the Earth’s Crust is based on lecture notes prepared for a course offered to graduate students in the Earth sciences and engineering at University of Potsdam. In my opinion, it will undoubtedly also become a standard reference book on the desk of most scientists working with rocks, such as geophysicists, structural geologists, rock mechanics experts, as well as geotechnical and petroleum en- neers. That is because this book is concerned with what is probably the most pe- liar characteristic of rock – its initial stress condition. Rock is always under a natural state of stress, primarily a result of the gravitational and tectonic forces to which it is subjected. Crustal stresses can vary regionally and locally and can reach in places considerable magnitudes, leading to natural or man-made mechanical failure. P- existing stress distinguishes rock from most other materials and is at the core of the discipline of “Rock Mechanics”, which has been developed over the last century. Knowledge of rock stress is fundamental to understanding faulting mechanisms and earthquake triggering, to designing stable underground caverns and prod- tive oil fields, and to improving mining methods and geothermal energy extraction, among others. Several books have been written on the subject, but none has atte- ted to be as all-encompassing as the one by Zang and Stephansson.


Rock Fractures and Fluid Flow

Rock Fractures and Fluid Flow

Author: Committee on Fracture Characterization and Fluid Flow

Publisher: National Academies Press

Published: 1996-09-10

Total Pages: 568

ISBN-13: 0309563488

DOWNLOAD EBOOK

Scientific understanding of fluid flow in rock fractures--a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storage--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.