Design, Synthesis, and Application of Lithographic Resists and Nonlinear Optical Materials

Design, Synthesis, and Application of Lithographic Resists and Nonlinear Optical Materials

Author: Brian Keith Long

Publisher:

Published: 2009

Total Pages: 500

ISBN-13:

DOWNLOAD EBOOK

Fluorinated norbornene monomers exhibit the requisite properties for inclusion in 157 nm photoresists, but traditional addition and radical polymerizations with these monomers have failed. Norbornanediols provide an alternate route to these materials via condensation polymerization, and methods have been developed for the efficient synthesis of the exo-2-syn-7- and endo-2-exo-3-dihydroxynorbornanes. Synthesis of the fluorinated analogues is complicated by steric and electronic effects; however, a high-yielding synthesis of endo-2-exo-3-dihydroxynorbornane bearing a 5-endo-[2,2-bis(trifluoromethyl)hydroxyethyl] substituent as well as its corresponding polymer are reported. As an alternative to 157 nm and other optical lithographies, Step and Flash Imprint Lithography, or S-FIL®, was introduced in 1999 by The University of Texas at Austin. It has proven to be a cost effective, high resolution alternative to traditional optical lithography. Often in the S-FIL process, residual resist may become imbedded within the template features resulting in device defects due to the imprint and repeat nature of S-FIL. The high silicon and cross-linking content of the resist formulations are extremely difficult, if not impossible to remove from quartz imprint mold without template degradation. Our approach to this problem was the synthesis of a family of thermally reversible, cross-linkable monomers that will facilitate resist removal while maintaining template integrity. Our monomers utilize classic Diels-Alder chemistry to provide thermal reversibility, while pendant acrylate functionalities facilitate cross-linking. Herein we report the synthesis of several Diels-Alder compounds, incorporate them into resist formulations, and test their efficacy for resist removal. In an effort to develop unique patternable materials, our laboratory is currently engaged in the design and development of photonic crystals comprised of organic elements with highly stable electro-optic activity. Fabrication of these devices requires polymers that can be patterned at high resolution, have large second order nonlinear optical (NLO) coefficients, and that are thermally stable after poling. Our route to these materials involves the synthesis of a prepolymer that can be spin coated, poled, and then fixed by a photochemical cross-linking reaction. We now describe an efficient synthetic route to a new class of biscross-linkable monomers and the characteristics of their corresponding nonlinear optical polymers.


Materials and Processes for Next Generation Lithography

Materials and Processes for Next Generation Lithography

Author:

Publisher: Elsevier

Published: 2016-11-08

Total Pages: 636

ISBN-13: 0081003587

DOWNLOAD EBOOK

As the requirements of the semiconductor industry have become more demanding in terms of resolution and speed it has been necessary to push photoresist materials far beyond the capabilities previously envisioned. Currently there is significant worldwide research effort in to so called Next Generation Lithography techniques such as EUV lithography and multibeam electron beam lithography. These developments in both the industrial and the academic lithography arenas have led to the proliferation of numerous novel approaches to resist chemistry and ingenious extensions of traditional photopolymers. Currently most texts in this area focus on either lithography with perhaps one or two chapters on resists, or on traditional resist materials with relatively little consideration of new approaches. This book therefore aims to bring together the worlds foremost resist development scientists from the various community to produce in one place a definitive description of the many approaches to lithography fabrication. Assembles up-to-date information from the world’s premier resist chemists and technique development lithographers on the properties and capabilities of the wide range of resist materials currently under investigation Includes information on processing and metrology techniques Brings together multiple approaches to litho pattern recording from academia and industry in one place


Molecular Resists for Advanced Lithography - Design, Synthesis, Characterization, and Simulation

Molecular Resists for Advanced Lithography - Design, Synthesis, Characterization, and Simulation

Author: Richard A. Lawson

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Many problems exist in current photoresist designs that will limit their ability to obtain the performance required for future generations of integrated circuit devices. In order to overcome these challenges, novel resist designs are required, along with advancement in the fundamental understanding of the source of these problems. A mesoscale kinetic Monte Carlo simulation of resists was developed to probe the effects of changes in resist formulation and processing. A detailed SEM simulator was developed in order to better understand the effect of metrology on the characterization of the final resist relief image. Several important structure-property relations were developed for the prediction of glass transition temperature in molecular resists and the prediction of the solubility of molecular resists in developer. Five new families of molecular resists were developed that provide solutions to some of the limitations in current resist designs. Single component molecular resists have all of the functional groups required to act as a chemically amplified resist contained in a single molecule. This eliminates inhomogeneities in the resist and provides improved line edge roughness. Non-chemically amplified molecular resists were developed that have very good sensitivity due to the unique dissolution properties of molecular resists. Negative tone molecular resists were developed that have an excellent combination of resolution, sensitivity, and line edge roughness with better resolution than has been previously seen in negative tone resists. Control methods were also developed to improve the resolution of these types of negative tone resists even further.


Beyond the Molecular Frontier

Beyond the Molecular Frontier

Author: National Research Council

Publisher: National Academies Press

Published: 2003-03-19

Total Pages: 238

ISBN-13: 0309168392

DOWNLOAD EBOOK

Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.


Small Molecule Photoresist Materials for Next Generation Lithography

Small Molecule Photoresist Materials for Next Generation Lithography

Author: Marie Elyse Krysak

Publisher:

Published: 2013

Total Pages: 414

ISBN-13:

DOWNLOAD EBOOK

Photolithography remains the most efficient method to create semiconductor devices. Moore's law states that the number of transistors per integrated circuit will double every four years. In order to successfully continue this trend of miniaturizing feature sizes, new, smaller sized patterning materials must be studied. Small molecule photoresists are being developed for high resolution patterning. Low molecular weight amorphous materials, or molecular glasses (MGs), have emerged as alternatives to polymeric resist materials. They combine the benefits of small molecular size with the favorable aspects of polymers, such as a high glass transition temperature (Tg) and the ability to form thin films. Inorganic-based nanoparticles are currently being explored as next generation photoresists. These materials are similar in architecture to MGs, but are comprised of an inorganic core that provides excellent thermal stability and resistance to plasma etching. This research focuses on the synthesis and characterization both MG and nanoparticle resist materials for high resolution patterning. The materials studied are designed for use with Extreme Ultraviolet Lithography (EUV-L), using a wavelength of 13.5 nm. This next-generation technique is believed to be the key to extending patterning capabilities to sub 30 nm and beyond. Small molecule resists materials have been specifically designed for use with alternative lithographic processing techniques. Small, rigid structures were designed for vapor deposition, which has been examined as an alternative to spin-coating. This process has been shown to deposit a uniform film, free from defects and impurities, without the use of solvent. Sub-millisecond laser heating is a relatively new technique that is studied as an alternative the post exposure bake. This method has shown the ability to reduce line edge roughness while simultaneously improving resist sensitivity. Systematically designed MG photoacid generators have been used to characterize the acid diffusion behavior during laser heating as compared to traditional hotplate heating. The development of resist materials for these new processes is a critical step in the preparation of these processes for widespread use in lithographic processing. ii.


Nanolithography

Nanolithography

Author: M Feldman

Publisher: Woodhead Publishing

Published: 2014-02-13

Total Pages: 599

ISBN-13: 0857098756

DOWNLOAD EBOOK

Integrated circuits, and devices fabricated using the techniques developed for integrated circuits, have steadily gotten smaller, more complex, and more powerful. The rate of shrinking is astonishing – some components are now just a few dozen atoms wide. This book attempts to answer the questions, “What comes next? and “How do we get there? Nanolithography outlines the present state of the art in lithographic techniques, including optical projection in both deep and extreme ultraviolet, electron and ion beams, and imprinting. Special attention is paid to related issues, such as the resists used in lithography, the masks (or lack thereof), the metrology needed for nano-features, modeling, and the limitations caused by feature edge roughness. In addition emerging technologies are described, including the directed assembly of wafer features, nanostructures and devices, nano-photonics, and nano-fluidics. This book is intended as a guide to the researcher new to this field, reading related journals or facing the complexities of a technical conference. Its goal is to give enough background information to enable such a researcher to understand, and appreciate, new developments in nanolithography, and to go on to make advances of his/her own. Outlines the current state of the art in alternative nanolithography technologies in order to cope with the future reduction in size of semiconductor chips to nanoscale dimensions Covers lithographic techniques, including optical projection, extreme ultraviolet (EUV), nanoimprint, electron beam and ion beam lithography Describes the emerging applications of nanolithography in nanoelectronics, nanophotonics and microfluidics


Kirk-Othmer Concise Encyclopedia of Chemical Technology, 2 Volume Set

Kirk-Othmer Concise Encyclopedia of Chemical Technology, 2 Volume Set

Author: Kirk-Othmer

Publisher: John Wiley & Sons

Published: 2007-07-16

Total Pages: 2762

ISBN-13: 0470047488

DOWNLOAD EBOOK

This is an easily-accessible two-volume encyclopedia summarizing all the articles in the main volumes Kirk-Othmer Encyclopedia of Chemical Technology, Fifth Edition organized alphabetically. Written by prominent scholars from industry, academia, and research institutions, the Encyclopedia presents a wide scope of articles on chemical substances, properties, manufacturing, and uses; on industrial processes, unit operations in chemical engineering; and on fundamentals and scientific subjects related to the field.


Materials Science and Engineering for the 1990s

Materials Science and Engineering for the 1990s

Author: National Research Council

Publisher: National Academies Press

Published: 1989-02-01

Total Pages: 322

ISBN-13: 0309039282

DOWNLOAD EBOOK

Materials science and engineering (MSE) contributes to our everyday lives by making possible technologies ranging from the automobiles we drive to the lasers our physicians use. Materials Science and Engineering for the 1990s charts the impact of MSE on the private and public sectors and identifies the research that must be conducted to help America remain competitive in the world arena. The authors discuss what current and future resources would be needed to conduct this research, as well as the role that industry, the federal government, and universities should play in this endeavor.