Self-assembling Biomaterials

Self-assembling Biomaterials

Author: Helena S. Azevedo

Publisher: Woodhead Publishing

Published: 2018-04-17

Total Pages: 614

ISBN-13: 0081020120

DOWNLOAD EBOOK

Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language of life and can be designed to seamlessly integrate with the biological environment, offering unique engineering opportunities in bionanotechnology. The book is divided in five parts, comprising design of molecular building blocks for self-assembly; exclusive features of self-assembling biomaterials; specific methods and techniques to predict, investigate and characterize self-assembly and formed assemblies; different approaches for controlling self-assembly across multiple length scales and the nano/micro/macroscopic properties of biomaterials; diverse range of applications in biomedicine, including drug delivery, theranostics, cell culture and tissue regeneration. Written by researchers working in self-assembling biomaterials, it addresses a specific need within the Biomaterials scientific community. Explores both theoretical and practical aspects of self-assembly in biomaterials Includes a dedicated section on characterization techniques, specific for self-assembling biomaterials Examines the use of dynamic self-assembling biomaterials


Design of Self-Assembling Materials

Design of Self-Assembling Materials

Author: Ivan Coluzza

Publisher: Springer

Published: 2018-03-23

Total Pages: 139

ISBN-13: 331971578X

DOWNLOAD EBOOK

This book provides in-depth insights into assembling dynamics of proteins, DNA and other nanoparticles. The applications of basic knowledge in the development of artificial self-assembling systems will be discussed and state of the art methodology in the field will be presented.This interdisciplinary work brings together aspects of different fields of expertise such as Biology, Physics and Material Sciences and is intended for researchers, professors and graduate students interested in the design of self-assembling materials.


Beyond the Molecular Frontier

Beyond the Molecular Frontier

Author: National Research Council

Publisher: National Academies Press

Published: 2003-03-19

Total Pages: 238

ISBN-13: 0309168392

DOWNLOAD EBOOK

Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.


Directed Self-assembly of Block Co-polymers for Nano-manufacturing

Directed Self-assembly of Block Co-polymers for Nano-manufacturing

Author: Roel Gronheid

Publisher: Woodhead Publishing

Published: 2015-07-17

Total Pages: 328

ISBN-13: 0081002610

DOWNLOAD EBOOK

The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing Highlights the importance of this technology to both the present and future of nano-manufacturing by exploring its potential use in a range of fields


Self-Assembling Systems

Self-Assembling Systems

Author: Li-Tang Yan

Publisher: John Wiley & Sons

Published: 2016-10-06

Total Pages: 384

ISBN-13: 1119113156

DOWNLOAD EBOOK

Provides comprehensive knowledge on concepts, theoretical methods and state-of-the-art computational techniques for the simulation of self-assembling systems Looks at the field of self-assembly from a theoretical perspective Highlights the importance of theoretical studies and tailored computer simulations to support the design of new self-assembling materials with useful properties Divided into three parts covering the basic principles of self-assembly, methodology, and emerging topics


Materials Nanoarchitectonics

Materials Nanoarchitectonics

Author: Katsuhiko Ariga

Publisher: Elsevier

Published: 2023-12-15

Total Pages: 648

ISBN-13: 0323994733

DOWNLOAD EBOOK

Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems Discusses novel approaches towards the creation of complex multiscale architectures


Peptide Self-Assembly and Engineering

Peptide Self-Assembly and Engineering

Author: Xuehai Yan

Publisher: John Wiley & Sons

Published: 2024-02-09

Total Pages: 933

ISBN-13: 3527841253

DOWNLOAD EBOOK

Peptide Self-Assembly and Engineering State-of-the-art research in peptide self-assembly, with coverage of fundamental aspects of how peptides self-assemble and an extensive number of applications Peptide Self-Assembly and Engineering: Fundamentals, Structures, and Applications (2V set) covers the latest progresses in the field of peptide self-assembly and engineering, including the fundamental principles of peptide self-assembly, new theory of nucleation and growth, thermodynamics and kinetics, materials design rules, and precisely controlled structures and unique functions. The broad contents from this book enable readers to obtain a systematical and comprehensive knowledge in the field of peptide self-assembly and engineering. Contributed by the leading scientists and edited by a highly qualified academic and an authority in the field, Peptide Self-Assembly and Engineering includes information on: Emerging areas in peptide assembly, such as immune agents, bioelectronics, energy conversion, flexible sensors, biomimetic catalysis, and more Existing applications in biomedical engineering, nanotechnology, and photoelectronics, including tissue engineering, drug delivery, and biosensing devices History of peptide self-assembly for design of functional materials and peptides’ unique mechanical, optical, electronic, and biological properties Various solvent conditions, such as pH, ionic strength, and polarity, that can affect the structure and stability of peptide assemblies A very comprehensive reference covering the latest progresses in the field of peptide self-assembly and engineering, Peptide Self-Assembly and Engineering is an essential resource for all scientists performing research intersecting with the subject, including biochemists, biotechnologists, pharmaceutical chemists, protein chemists, materials scientists, and medicinal chemists.


Mesoscale Chemistry

Mesoscale Chemistry

Author: National Research Council

Publisher: National Academies Press

Published: 2015-08-06

Total Pages: 229

ISBN-13: 030937331X

DOWNLOAD EBOOK

In the last few decades great strides have been made in chemistry at the nanoscale, where the atomic granularity of matter and the exact positions of individual atoms are key determinants of structure and dynamics. Less attention, however, has been paid to the mesoscale-it is at this scale, in the range extending from large molecules (10 nm) through viruses to eukaryotic cells (10 microns), where interesting ensemble effects and the functionality that is critical to macroscopic phenomenon begins to manifest itself and cannot be described by laws on the scale of atoms and molecules alone. To further explore how knowledge about mesoscale phenomena can impact chemical research and development activities and vice versa, the Chemical Sciences Roundtable of the National Research Council convened a workshop on mesoscale chemistry in November 2014. With a focus on the research on chemical phenomena at the mesoscale, participants examined the opportunities that utilizing those behaviors can have for developing new catalysts, adding new functionality to materials, and increasing our understanding of biological and interfacial systems. The workshop also highlighted some of the challenges for analysis and description of mesoscale structures. This report summarizes the presentations and discussion of the workshop.


Systems Self-Assembly

Systems Self-Assembly

Author:

Publisher: Elsevier

Published: 2011-09-22

Total Pages: 369

ISBN-13: 0080559751

DOWNLOAD EBOOK

Systems Self-Assembly is the only book to showcase state-of-the-art self-assembly systems that arise from the computational, biological, chemical, physical and engineering disciplines. Written by world experts in each area, it provides a coherent, integrated view of both book practice examples and new trends with a clearly presented computational flavor. The unifying thread throughout the text is the computational nature of self-assembling systems.This book consists of 13 chapters dealing with a variety of topics such as the patterns of self-organised nanoparticle assemblies; biomimetic design of dynamic self-assembling systems; computing by self-assembly involving DNA molecules, polyominoes, and cells; evolutionary design of a model of self-assembling chemical structures; self-assembly as an engineering concept across size scales; and probabilistic analysis of self-assembled molecular networks. Other chapters focus on the programming language of dynamic self-assembly; self-assembled computer architectures; simulation of self-assembly processes using abstract reduction systems; computer aided search for optimal self-assembly systems; theoretical aspects of programmable self-assembly; emergent cooperativity in large-scale patterns; and automated self-assembling programming.Systems Self-Assembly is an ideal reference for scientists, researchers and post-graduate students; practitioners in industry, engineering and science; and managers, decision-makers and policy makers. - The only book to showcases state-of-the-art self-assembly systems that arise from the computational, biological, chemical, physical and engineering disciplines - Coherent, integrated view of both book practice examples and new trends with a clearly presented computational flavor - Written by world experts in each area