Design of High-Performance Microprocessor Circuits

Design of High-Performance Microprocessor Circuits

Author: Anantha Chandrakasan

Publisher: Wiley-IEEE Press

Published: 2001

Total Pages: 592

ISBN-13:

DOWNLOAD EBOOK

The authors present readers with a compelling, one-stop, advanced system perspective on the intrinsic issues of digital system design. This invaluable reference prepares readers to meet the emerging challenges of the device and circuit issues associated with deep submicron technology. It incorporates future trends with practical, contemporary methodologies.


High-Performance Energy-Efficient Microprocessor Design

High-Performance Energy-Efficient Microprocessor Design

Author: Vojin G. Oklobdzija

Publisher: Springer Science & Business Media

Published: 2007-04-27

Total Pages: 342

ISBN-13: 0387340475

DOWNLOAD EBOOK

Written by the world’s most prominent microprocessor design leaders from industry and academia, this book provides complete coverage of all aspects of complex microprocessor design: technology, power management, clocking, high-performance architecture, design methodologies, memory and I/O design, computer aided design, testing and design for testability. The chapters provide state-of-the-art knowledge while including sufficient tutorial material to bring non-experts up to speed. A useful companion to design engineers working in related areas.


Design of High-Performance CMOS Voltage-Controlled Oscillators

Design of High-Performance CMOS Voltage-Controlled Oscillators

Author: Liang Dai

Publisher: Springer Science & Business Media

Published: 2003

Total Pages: 186

ISBN-13: 9781402072383

DOWNLOAD EBOOK

Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.


DRAM Circuit Design

DRAM Circuit Design

Author: Brent Keeth

Publisher: John Wiley & Sons

Published: 2007-12-04

Total Pages: 440

ISBN-13: 0470184752

DOWNLOAD EBOOK

A modern, comprehensive introduction to DRAM for students and practicing chip designers Dynamic Random Access Memory (DRAM) technology has been one of the greatestdriving forces in the advancement of solid-state technology. With its ability to produce high product volumes and low pricing, it forces solid-state memory manufacturers to work aggressively to cut costs while maintaining, if not increasing, their market share. As a result, the state of the art continues to advance owing to the tremendous pressure to get more memory chips from each silicon wafer, primarily through process scaling and clever design. From a team of engineers working in memory circuit design, DRAM Circuit Design gives students and practicing chip designers an easy-to-follow, yet thorough, introductory treatment of the subject. Focusing on the chip designer rather than the end user, this volume offers expanded, up-to-date coverage of DRAM circuit design by presenting both standard and high-speed implementations. Additionally, it explores a range of topics: the DRAM array, peripheral circuitry, global circuitry and considerations, voltage converters, synchronization in DRAMs, data path design, and power delivery. Additionally, this up-to-date and comprehensive book features topics in high-speed design and architecture and the ever-increasing speed requirements of memory circuits. The only book that covers the breadth and scope of the subject under one cover, DRAM Circuit Design is an invaluable introduction for students in courses on memory circuit design or advanced digital courses in VLSI or CMOS circuit design. It also serves as an essential, one-stop resource for academics, researchers, and practicing engineers.


Design for High Performance, Low Power, and Reliable 3D Integrated Circuits

Design for High Performance, Low Power, and Reliable 3D Integrated Circuits

Author: Sung Kyu Lim

Publisher: Springer Science & Business Media

Published: 2012-11-27

Total Pages: 573

ISBN-13: 1441995420

DOWNLOAD EBOOK

This book provides readers with a variety of algorithms and software tools, dedicated to the physical design of through-silicon-via (TSV) based, three-dimensional integrated circuits. It describes numerous “manufacturing-ready” GDSII-level layouts of TSV-based 3D ICs developed with the tools covered in the book. This book will also feature sign-off level analysis of timing, power, signal integrity, and thermal analysis for 3D IC designs. Full details of the related algorithms will be provided so that the readers will be able not only to grasp the core mechanics of the physical design tools, but also to be able to reproduce and improve upon the results themselves. This book will also offer various design-for-manufacturability (DFM), design-for-reliability (DFR), and design-for-testability (DFT) techniques that are considered critical to the physical design process.


Three-Dimensional Integrated Circuit Design

Three-Dimensional Integrated Circuit Design

Author: Vasilis F. Pavlidis

Publisher: Newnes

Published: 2017-07-04

Total Pages: 770

ISBN-13: 0124104843

DOWNLOAD EBOOK

Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: - Manufacturing techniques for 3-D ICs with TSVs - Electrical modeling and closed-form expressions of through silicon vias - Substrate noise coupling in heterogeneous 3-D ICs - Design of 3-D ICs with inductive links - Synchronization in 3-D ICs - Variation effects on 3-D ICs - Correlation of WID variations for intra-tier buffers and wires - Offers practical guidance on designing 3-D heterogeneous systems - Provides power delivery of 3-D ICs - Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more - Provides experimental case studies in power delivery, synchronization, and thermal characterization


Introduction to Place and Route Design in VLSIs

Introduction to Place and Route Design in VLSIs

Author: Patrick Lee

Publisher: Lulu.com

Published: 2007-01-05

Total Pages: 238

ISBN-13: 1430304928

DOWNLOAD EBOOK

The book is organized in seven chapters. Physical design flow. Timing constraints. Place and route concepts. Tool vendors. Process constraints. Timing closure. Place and route methodology and flow. ECO and spare gates. Formal verification. Coupling noise. Chip optimization and tapeout.


Multi-voltage CMOS Circuit Design

Multi-voltage CMOS Circuit Design

Author: Volkan Kursun

Publisher: John Wiley & Sons

Published: 2006-08-30

Total Pages: 242

ISBN-13: 047001024X

DOWNLOAD EBOOK

This book presents an in-depth treatment of various power reduction and speed enhancement techniques based on multiple supply and threshold voltages. A detailed discussion of the sources of power consumption in CMOS circuits will be provided whilst focusing primarily on identifying the mechanisms by which sub-threshold and gate oxide leakage currents are generated. The authors present a comprehensive review of state-of-the-art dynamic, static supply and threshold voltage scaling techniques and discuss the pros and cons of supply and threshold voltage scaling techniques.


Design and Modeling of Low Power VLSI Systems

Design and Modeling of Low Power VLSI Systems

Author: Sharma, Manoj

Publisher: IGI Global

Published: 2016-06-06

Total Pages: 423

ISBN-13: 1522501916

DOWNLOAD EBOOK

Very Large Scale Integration (VLSI) Systems refer to the latest development in computer microchips which are created by integrating hundreds of thousands of transistors into one chip. Emerging research in this area has the potential to uncover further applications for VSLI technologies in addition to system advancements. Design and Modeling of Low Power VLSI Systems analyzes various traditional and modern low power techniques for integrated circuit design in addition to the limiting factors of existing techniques and methods for optimization. Through a research-based discussion of the technicalities involved in the VLSI hardware development process cycle, this book is a useful resource for researchers, engineers, and graduate-level students in computer science and engineering.


A Designer's Guide to Asynchronous VLSI

A Designer's Guide to Asynchronous VLSI

Author: Peter A. Beerel

Publisher: Cambridge University Press

Published: 2010-02-04

Total Pages: 353

ISBN-13: 1139485288

DOWNLOAD EBOOK

Create low power, higher performance circuits with shorter design times using this practical guide to asynchronous design. This practical alternative to conventional synchronous design enables performance close to full-custom designs with design times that approach commercially available ASIC standard cell flows. It includes design trade-offs, specific design examples, and end-of-chapter exercises. Emphasis throughout is placed on practical techniques and real-world applications, making this ideal for circuit design students interested in alternative design styles and system-on-chip circuits, as well as circuit designers in industry who need new solutions to old problems.