Defect and Damage Evolution Quantification in Dynamically-deformed Metals Using Orientation-imaging Microscopy

Defect and Damage Evolution Quantification in Dynamically-deformed Metals Using Orientation-imaging Microscopy

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Orientation-imaging microscopy offers unique capabilities to quantify the defects and damage evolution occurring in metals following dynamic and shock loading. Examples of the quantification of the types of deformation twins activated, volume fraction of twinning, and damage evolution as a function of shock loading in Ta are presented. Electron back-scatter diffraction (EBSD) examination of the damage evolution in sweeping-detonation-wave shock loading to study spallation in Cu is also presented.


Microstructural Evolution During Dynamic Deformation of Cubic Metals

Microstructural Evolution During Dynamic Deformation of Cubic Metals

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Shockwave shape can influence dynamic damage evolution. Features such as rise time, pulse duration, peak shock pressure, pull back, and release rate are influenced as wave shape changes. However, their individual influence on dynamic damage evolution is not well understood. Specifically, changing from a square to triangular or Taylor wave loading profile can alter the release kinetics from peak shock pressure and the volume of material sampled during release. This creates a spatial influence. In high purity metals, because damage is often linked to boundaries within the microstructure (grain or twin), changing the volume of material sampled during release, can have a drastic influence on dynamic damage evolution as the number of boundaries or defects sampled is altered. In this study, model-driven dynamic experiments have been conducted on eu with four different grain sizes to examine, for a given shockwave shape, how the spatial effect of boundary distribution influences dynamic damage evolution. Both two and three dimensional damage characterization techniques have been utilized. This study shows the critical influence of spatial effects, in this case boundary density, on dynamic damage evolution. As the boundary density decreases, the damage evolution transitions from nucleation controlled to growth controlled. It also shows that specific boundaries, those with high Schmid factor orientations on either side, maybe a necessary condition for void formation.


Electron Backscatter Diffraction in Materials Science

Electron Backscatter Diffraction in Materials Science

Author: Adam J. Schwartz

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 352

ISBN-13: 1475732058

DOWNLOAD EBOOK

Crystallographic texture or preferred orientation has long been known to strongly influence material properties. Historically, the means of obtaining such texture data has been though the use of x-ray or neutron diffraction for bulk texture measurements, or transmission electron microscopy or electron channeling for local crystallographic information. In recent years, we have seen the emergence of a new characterization technique for probing the microtexture of materials. This advance has come about primarily through the automated indexing of electron backscatter diffraction (EBSD) patterns. The first commercially available system was introduced in 1994, and since then of sales worldwide has been dramatic. This has accompanied widening the growth applicability in materials scienceproblems such as microtexture, phase identification, grain boundary character distribution, deformation microstructures, etc. and is evidence that this technique can, in some cases, replace more time-consuming transmission electron microscope (TEM) or x-ray diffraction investigations. The benefits lie in the fact that the spatial resolution on new field emission scanning electron microscopes (SEM) can approach 50 nm, but spatial extent can be as large a centimeter or greater with a computer controlled stage and montagingofthe images. Additional benefits include the relative ease and low costofattaching EBSD hardware to new or existing SEMs. Electron backscatter diffraction is also known as backscatter Kikuchi diffraction (BKD), or electron backscatter pattern technique (EBSP). Commercial names for the automation include Orientation Imaging Microscopy (OIMTM) and Automated Crystal Orientation Mapping (ACOM).


Handbook of Damage Mechanics

Handbook of Damage Mechanics

Author: George Z. Voyiadjis

Publisher: Springer

Published: 2014-10-14

Total Pages: 1579

ISBN-13: 9781461455905

DOWNLOAD EBOOK

This authoritative reference provides comprehensive coverage of the topics of damage and healing mechanics. Computational modeling of constitutive equations is provided as well as solved examples in engineering applications. A wide range of materials that engineers may encounter are covered, including metals, composites, ceramics, polymers, biomaterials, and nanomaterials. The internationally recognized team of contributors employ a consistent and systematic approach, offering readers a user-friendly reference that is ideal for frequent consultation. Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures is ideal for graduate students and faculty, researchers, and professionals in the fields of Mechanical Engineering, Civil Engineering, Aerospace Engineering, Materials Science, and Engineering Mechanics.


Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods

Author: Franz Roters

Publisher: John Wiley & Sons

Published: 2011-08-04

Total Pages: 188

ISBN-13: 3527642099

DOWNLOAD EBOOK

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.