Capacitance Spectroscopy of Semiconductors

Capacitance Spectroscopy of Semiconductors

Author: Jian V. Li

Publisher: Pan Stanford

Published: 2018

Total Pages: 0

ISBN-13: 9781315150130

DOWNLOAD EBOOK

Capacitance spectroscopy refers to techniques for characterizing the electrical properties of semiconductor materials, junctions, and interfaces, all from the dependence of device capacitance on frequency, time, temperature, and electric potential. This book includes 15 chapters written by world-recognized, leading experts in the field, academia, national institutions, and industry, divided into four sections: Physics, Instrumentation, Applications, and Emerging Techniques. The first section establishes the fundamental framework relating capacitance and its allied concepts of conductance, admittance, and impedance to the electrical and optical properties of semiconductors. The second section reviews the electronic principles of capacitance measurements used by commercial products, as well as custom apparatus. The third section details the implementation in various scientific fields and industries, such as photovoltaics and electronic and optoelectronic devices. The last section presents the latest advances in capacitance-based electrical characterization aimed at reaching nanometer-scale resolution.


Halide Perovskites

Halide Perovskites

Author: Tze-Chien Sum

Publisher: John Wiley & Sons

Published: 2019-03-25

Total Pages: 312

ISBN-13: 3527341110

DOWNLOAD EBOOK

Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.


Trap Level Spectroscopy in Amorphous Semiconductors

Trap Level Spectroscopy in Amorphous Semiconductors

Author: Victor V. Mikla

Publisher: Elsevier

Published: 2010-06-11

Total Pages: 129

ISBN-13: 0123847168

DOWNLOAD EBOOK

Although amorphous semiconductors have been studied for over four decades, many of their properties are not fully understood. This book discusses not only the most common spectroscopic techniques but also describes their advantages and disadvantages. - Provides information on the most used spectroscopic techniques - Discusses the advantages and disadvantages of each technique


The Electrical Characterization of Semiconductors

The Electrical Characterization of Semiconductors

Author: Peter Blood

Publisher:

Published: 1992

Total Pages: 774

ISBN-13:

DOWNLOAD EBOOK

Describes the physical principles behind experimental techniques used for measuring the electrical properties of semiconductors. The principles involved are illustrated by reference to selected examples drawn from the world of semiconductor materials.


Semiconductor Material and Device Characterization

Semiconductor Material and Device Characterization

Author: Dieter K. Schroder

Publisher: John Wiley & Sons

Published: 2015-06-29

Total Pages: 800

ISBN-13: 0471739065

DOWNLOAD EBOOK

This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.


Power Electronics Device Applications of Diamond Semiconductors

Power Electronics Device Applications of Diamond Semiconductors

Author: Satoshi Koizumi

Publisher: Woodhead Publishing

Published: 2018-06-29

Total Pages: 466

ISBN-13: 0081021844

DOWNLOAD EBOOK

Power Electronics Device Applications of Diamond Semiconductors presents state-of-the-art research on diamond growth, doping, device processing, theoretical modeling and device performance. The book begins with a comprehensive and close examination of diamond crystal growth from the vapor phase for epitaxial diamond and wafer preparation. It looks at single crystal vapor deposition (CVD) growth sectors and defect control, ultra high purity SC-CVD, SC diamond wafer CVD, heteroepitaxy on Ir/MqO and needle-induced large area growth, also discussing the latest doping and semiconductor characterization methods, fundamental material properties and device physics. The book concludes with a discussion of circuits and applications, featuring the switching behavior of diamond devices and applications, high frequency and high temperature operation, and potential applications of diamond semiconductors for high voltage devices. Includes contributions from today's most respected researchers who present the latest results for diamond growth, doping, device fabrication, theoretical modeling and device performance Examines why diamond semiconductors could lead to superior power electronics Discusses the main challenges to device realization and the best opportunities for the next generation of power electronics