Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Author: Thomas, J. Joshua

Publisher: IGI Global

Published: 2019-11-29

Total Pages: 355

ISBN-13: 1799811948

DOWNLOAD EBOOK

Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.


Big Data Analytics Methods

Big Data Analytics Methods

Author: Peter Ghavami

Publisher: Createspace Independent Publishing Platform

Published: 2016-03-06

Total Pages: 304

ISBN-13: 9781530414833

DOWNLOAD EBOOK

Big Data Analytics Methods unveils secrets to advanced analytics techniques ranging from machine learning, random forest classifiers, predictive modeling, cluster analysis, natural language processing (NLP), Kalman filtering and ensemble of models for optimal accuracy of analysis and prediction. More than 100 analytics techniques and methods are covered. The book offers solutions and tips on handling missing data, noisy and dirty data, error reduction and boosting signal to reduce noise. This book is ideal as a text book for a course or as a reference for data scientists, data engineers, data analysts, Business intelligence practitioners, and business managers. It covers 10 chapters that discuss natural language processing (NLP), data visualization, prediction, optimization, artificial intelligence, regression analysis, cox hazard model and many analytics use case examples with applications in healthcare, transportation, retail, telecommunication, consulting, manufacturing, energy and financial services. Big Data Analytics Methods Is a must read for those who wish to gain confidence and knowledge about big data and advanced analytics techniques. Read this book and confidently speak, lead and guide others about machine learning, neural networks, NLP, deep learning, and over 100 other analytics techniques. This book is fun and easy to read. It starts with simple and broad explanation of methods and gradually introduces more technical terms and techniques layer by layer. It finally introduces the underlying mathematical terms for those who want a mathematical foundation of the analytics methods. This book is one of a kind as it provides state of the art in advanced data analytics methods with important best practices to ensure the reader's success in data analytics.


Big Data Technologies and Applications

Big Data Technologies and Applications

Author: Borko Furht

Publisher: Springer

Published: 2016-09-16

Total Pages: 405

ISBN-13: 3319445502

DOWNLOAD EBOOK

The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors.


Big Data Analytics Methods

Big Data Analytics Methods

Author: Peter Ghavami

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-12-16

Total Pages: 254

ISBN-13: 1547401567

DOWNLOAD EBOOK

Big Data Analytics Methods unveils secrets to advanced analytics techniques ranging from machine learning, random forest classifiers, predictive modeling, cluster analysis, natural language processing (NLP), Kalman filtering and ensembles of models for optimal accuracy of analysis and prediction. More than 100 analytics techniques and methods provide big data professionals, business intelligence professionals and citizen data scientists insight on how to overcome challenges and avoid common pitfalls and traps in data analytics. The book offers solutions and tips on handling missing data, noisy and dirty data, error reduction and boosting signal to reduce noise. It discusses data visualization, prediction, optimization, artificial intelligence, regression analysis, the Cox hazard model and many analytics using case examples with applications in the healthcare, transportation, retail, telecommunication, consulting, manufacturing, energy and financial services industries. This book's state of the art treatment of advanced data analytics methods and important best practices will help readers succeed in data analytics.


Big Data Optimization: Recent Developments and Challenges

Big Data Optimization: Recent Developments and Challenges

Author: Ali Emrouznejad

Publisher: Springer

Published: 2016-05-26

Total Pages: 492

ISBN-13: 3319302655

DOWNLOAD EBOOK

The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.


Data Science and Machine Learning

Data Science and Machine Learning

Author: Dirk P. Kroese

Publisher: CRC Press

Published: 2019-11-20

Total Pages: 538

ISBN-13: 1000730778

DOWNLOAD EBOOK

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code


Deep Learning

Deep Learning

Author: Dulani Meedeniya

Publisher: CRC Press

Published: 2023-10-16

Total Pages: 199

ISBN-13: 100092405X

DOWNLOAD EBOOK

This book focuses on deep learning (DL), which is an important aspect of data science, that includes predictive modeling. DL applications are widely used in domains such as finance, transport, healthcare, automanufacturing, and advertising. The design of the DL models based on artificial neural networks is influenced by the structure and operation of the brain. This book presents a comprehensive resource for those who seek a solid grasp of the techniques in DL. Key features: Provides knowledge on theory and design of state-of-the-art deep learning models for real-world applications Explains the concepts and terminology in problem-solving with deep learning Explores the theoretical basis for major algorithms and approaches in deep learning Discusses the enhancement techniques of deep learning models Identifies the performance evaluation techniques for deep learning models Accordingly, the book covers the entire process flow of deep learning by providing awareness of each of the widely used models. This book can be used as a beginners’ guide where the user can understand the associated concepts and techniques. This book will be a useful resource for undergraduate and postgraduate students, engineers, and researchers, who are starting to learn the subject of deep learning.


Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing

Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing

Author: Velayutham, Sathiyamoorthi

Publisher: IGI Global

Published: 2021-01-29

Total Pages: 350

ISBN-13: 1799831132

DOWNLOAD EBOOK

In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research on the relation between these technologies and the impact they collectively have in solving real-world challenges. While highlighting topics such as cloud-based analytics, intelligent algorithms, and information security, this publication explores current issues that remain when attempting to implement these systems as well as the specific applications IoT, big data, and cloud computing have in various professional sectors. This book is ideally designed for academicians, researchers, developers, computer scientists, IT professionals, practitioners, scholars, students, and engineers seeking research on the integration of emerging technologies to solve modern societal issues.


Optimizing Data and New Methods for Efficient Knowledge Discovery and Information Resources Management: Emerging Research and Opportunities

Optimizing Data and New Methods for Efficient Knowledge Discovery and Information Resources Management: Emerging Research and Opportunities

Author: Swayze, Susan

Publisher: IGI Global

Published: 2020-06-26

Total Pages: 198

ISBN-13: 1799822370

DOWNLOAD EBOOK

The fast-paced world created by the accessibility of consumer information through internet-generated data requires improved information-management platforms. The continuous evaluation and evolution of these systems facilitate enhanced data reference and output. Optimizing Data and New Methods for Efficient Knowledge Discovery and Information Resources Management is a critical research publication that provides insight into the varied and rapidly changing fields of knowledge discovery and information resource management. Highlighting a range of topics such as datamining, artificial intelligence, and risk assessment, this book is essential for librarians, academicians, policymakers, information managers, professionals, and researchers in fields that include artificial intelligence, knowledge discovery, data visualization, big data, and information resources management.


Computational Analysis and Deep Learning for Medical Care

Computational Analysis and Deep Learning for Medical Care

Author: Amit Kumar Tyagi

Publisher: John Wiley & Sons

Published: 2021-08-24

Total Pages: 532

ISBN-13: 1119785723

DOWNLOAD EBOOK

The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.