Deep Learning Approaches for Spoken and Natural Language Processing

Deep Learning Approaches for Spoken and Natural Language Processing

Author: Virender Kadyan

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9783030797799

DOWNLOAD EBOOK

This book provides insights into how deep learning techniques impact language and speech processing applications. The authors discuss the promise, limits and the new challenges in deep learning. The book covers the major differences between the various applications of deep learning and the classical machine learning techniques. The main objective of the book is to present a comprehensive survey of the major applications and research oriented articles based on deep learning techniques that are focused on natural language and speech signal processing. The book is relevant to academicians, research scholars, industrial experts, scientists and post graduate students working in the field of speech signal and natural language processing and would like to add deep learning to enhance capabilities of their work. Discusses current research challenges and future perspective about how deep learning techniques can be applied to improve NLP and speech processing applications; Presents and escalates the research trends and future direction of language and speech processing; Includes theoretical research, experimental results, and applications of deep learning.


Deep Learning in Natural Language Processing

Deep Learning in Natural Language Processing

Author: Li Deng

Publisher: Springer

Published: 2018-05-23

Total Pages: 338

ISBN-13: 9811052093

DOWNLOAD EBOOK

In recent years, deep learning has fundamentally changed the landscapes of a number of areas in artificial intelligence, including speech, vision, natural language, robotics, and game playing. In particular, the striking success of deep learning in a wide variety of natural language processing (NLP) applications has served as a benchmark for the advances in one of the most important tasks in artificial intelligence. This book reviews the state of the art of deep learning research and its successful applications to major NLP tasks, including speech recognition and understanding, dialogue systems, lexical analysis, parsing, knowledge graphs, machine translation, question answering, sentiment analysis, social computing, and natural language generation from images. Outlining and analyzing various research frontiers of NLP in the deep learning era, it features self-contained, comprehensive chapters written by leading researchers in the field. A glossary of technical terms and commonly used acronyms in the intersection of deep learning and NLP is also provided. The book appeals to advanced undergraduate and graduate students, post-doctoral researchers, lecturers and industrial researchers, as well as anyone interested in deep learning and natural language processing.


Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing

Author: Jason Brownlee

Publisher: Machine Learning Mastery

Published: 2017-11-21

Total Pages: 413

ISBN-13:

DOWNLOAD EBOOK

Deep learning methods are achieving state-of-the-art results on challenging machine learning problems such as describing photos and translating text from one language to another. In this new laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about natural language processing. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what natural language processing is, the promise of deep learning in the field, how to clean and prepare text data for modeling, and how to develop deep learning models for your own natural language processing projects.


Deep Learning Approaches for Spoken and Natural Language Processing

Deep Learning Approaches for Spoken and Natural Language Processing

Author: Virender Kadyan

Publisher: Springer Nature

Published: 2022-01-01

Total Pages: 171

ISBN-13: 3030797783

DOWNLOAD EBOOK

This book provides insights into how deep learning techniques impact language and speech processing applications. The authors discuss the promise, limits and the new challenges in deep learning. The book covers the major differences between the various applications of deep learning and the classical machine learning techniques. The main objective of the book is to present a comprehensive survey of the major applications and research oriented articles based on deep learning techniques that are focused on natural language and speech signal processing. The book is relevant to academicians, research scholars, industrial experts, scientists and post graduate students working in the field of speech signal and natural language processing and would like to add deep learning to enhance capabilities of their work. Discusses current research challenges and future perspective about how deep learning techniques can be applied to improve NLP and speech processing applications; Presents and escalates the research trends and future direction of language and speech processing; Includes theoretical research, experimental results, and applications of deep learning.


Deep Learning

Deep Learning

Author: Li Deng

Publisher:

Published: 2014

Total Pages: 212

ISBN-13: 9781601988140

DOWNLOAD EBOOK

Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks


Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing

Author: Karthiek Reddy Bokka

Publisher: Packt Publishing Ltd

Published: 2019-06-11

Total Pages: 372

ISBN-13: 1838553673

DOWNLOAD EBOOK

Gain the knowledge of various deep neural network architectures and their application areas to conquer your NLP issues. Key FeaturesGain insights into the basic building blocks of natural language processingLearn how to select the best deep neural network to solve your NLP problemsExplore convolutional and recurrent neural networks and long short-term memory networksBook Description Applying deep learning approaches to various NLP tasks can take your computational algorithms to a completely new level in terms of speed and accuracy. Deep Learning for Natural Language Processing starts off by highlighting the basic building blocks of the natural language processing domain. The book goes on to introduce the problems that you can solve using state-of-the-art neural network models. After this, delving into the various neural network architectures and their specific areas of application will help you to understand how to select the best model to suit your needs. As you advance through this deep learning book, you’ll study convolutional, recurrent, and recursive neural networks, in addition to covering long short-term memory networks (LSTM). Understanding these networks will help you to implement their models using Keras. In the later chapters, you will be able to develop a trigger word detection application using NLP techniques such as attention model and beam search. By the end of this book, you will not only have sound knowledge of natural language processing but also be able to select the best text pre-processing and neural network models to solve a number of NLP issues. What you will learnUnderstand various pre-processing techniques for deep learning problemsBuild a vector representation of text using word2vec and GloVeCreate a named entity recognizer and parts-of-speech tagger with Apache OpenNLPBuild a machine translation model in KerasDevelop a text generation application using LSTMBuild a trigger word detection application using an attention modelWho this book is for If you’re an aspiring data scientist looking for an introduction to deep learning in the NLP domain, this is just the book for you. Strong working knowledge of Python, linear algebra, and machine learning is a must.


Natural Language Processing in Artificial Intelligence

Natural Language Processing in Artificial Intelligence

Author: Brojo Kishore Mishra

Publisher: CRC Press

Published: 2020-11-01

Total Pages: 297

ISBN-13: 1000711315

DOWNLOAD EBOOK

This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.


Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing

Author: Palash Goyal

Publisher: Apress

Published: 2018-06-26

Total Pages: 290

ISBN-13: 1484236858

DOWNLOAD EBOOK

Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You’ll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. What You Will Learn Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification Who This Book Is For Software developers who are curious to try out deep learning with NLP.


Applied Natural Language Processing in the Enterprise

Applied Natural Language Processing in the Enterprise

Author: Ankur A. Patel

Publisher: "O'Reilly Media, Inc."

Published: 2021-05-12

Total Pages: 336

ISBN-13: 1492062545

DOWNLOAD EBOOK

NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production