Deep Learning and XAI Techniques for Anomaly Detection

Deep Learning and XAI Techniques for Anomaly Detection

Author: Cher Simon

Publisher: Packt Publishing Ltd

Published: 2023-01-31

Total Pages: 218

ISBN-13: 1804613371

DOWNLOAD EBOOK

Create interpretable AI models for transparent and explainable anomaly detection with this hands-on guide Purchase of the print or Kindle book includes a free PDF eBook Key FeaturesBuild auditable XAI models for replicability and regulatory complianceDerive critical insights from transparent anomaly detection modelsStrike the right balance between model accuracy and interpretabilityBook Description Despite promising advances, the opaque nature of deep learning models makes it difficult to interpret them, which is a drawback in terms of their practical deployment and regulatory compliance. Deep Learning and XAI Techniques for Anomaly Detection shows you state-of-the-art methods that'll help you to understand and address these challenges. By leveraging the Explainable AI (XAI) and deep learning techniques described in this book, you'll discover how to successfully extract business-critical insights while ensuring fair and ethical analysis. This practical guide will provide you with tools and best practices to achieve transparency and interpretability with deep learning models, ultimately establishing trust in your anomaly detection applications. Throughout the chapters, you'll get equipped with XAI and anomaly detection knowledge that'll enable you to embark on a series of real-world projects. Whether you are building computer vision, natural language processing, or time series models, you'll learn how to quantify and assess their explainability. By the end of this deep learning book, you'll be able to build a variety of deep learning XAI models and perform validation to assess their explainability. What you will learnExplore deep learning frameworks for anomaly detectionMitigate bias to ensure unbiased and ethical analysisIncrease your privacy and regulatory compliance awarenessBuild deep learning anomaly detectors in several domainsCompare intrinsic and post hoc explainability methodsExamine backpropagation and perturbation methodsConduct model-agnostic and model-specific explainability techniquesEvaluate the explainability of your deep learning modelsWho this book is for This book is for anyone who aspires to explore explainable deep learning anomaly detection, tenured data scientists or ML practitioners looking for Explainable AI (XAI) best practices, or business leaders looking to make decisions on trade-off between performance and interpretability of anomaly detection applications. A basic understanding of deep learning and anomaly detection–related topics using Python is recommended to get the most out of this book.


Deep Learning and XAI Techniques for Anomaly Detection

Deep Learning and XAI Techniques for Anomaly Detection

Author: Cher Simon

Publisher:

Published: 2023

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Despite promising advances, the opaque nature of deep learning models makes it difficult to interpret them, which is a drawback in terms of their practical deployment and regulatory compliance. Deep Learning and XAI Techniques for Anomaly Detection shows you state-of-the-art methods that'll help you to understand and address these challenges. By leveraging the Explainable AI (XAI) and deep learning techniques described in this book, you'll discover how to successfully extract business-critical insights while ensuring fair and ethical analysis. This practical guide will provide you with tools and best practices to achieve transparency and interpretability with deep learning models, ultimately establishing trust in your anomaly detection applications. Throughout the chapters, you'll get equipped with XAI and anomaly detection knowledge that'll enable you to embark on a series of real-world projects. Whether you are building computer vision, natural language processing, or time series models, you'll learn how to quantify and assess their explainability. By the end of this deep learning book, you'll be able to build a variety of deep learning XAI models and perform validation to assess their explainability.


Beginning Anomaly Detection Using Python-Based Deep Learning

Beginning Anomaly Detection Using Python-Based Deep Learning

Author: Sridhar Alla

Publisher: Apress

Published: 2019-10-10

Total Pages: 427

ISBN-13: 1484251776

DOWNLOAD EBOOK

Utilize this easy-to-follow beginner's guide to understand how deep learning can be applied to the task of anomaly detection. Using Keras and PyTorch in Python, the book focuses on how various deep learning models can be applied to semi-supervised and unsupervised anomaly detection tasks. This book begins with an explanation of what anomaly detection is, what it is used for, and its importance. After covering statistical and traditional machine learning methods for anomaly detection using Scikit-Learn in Python, the book then provides an introduction to deep learning with details on how to build and train a deep learning model in both Keras and PyTorch before shifting the focus to applications of the following deep learning models to anomaly detection: various types of Autoencoders, Restricted Boltzmann Machines, RNNs & LSTMs, and Temporal Convolutional Networks. The book explores unsupervised and semi-supervised anomaly detection along with the basics of time series-based anomaly detection. By the end of the book you will have a thorough understanding of the basic task of anomaly detection as well as an assortment of methods to approach anomaly detection, ranging from traditional methods to deep learning. Additionally, you are introduced to Scikit-Learn and are able to create deep learning models in Keras and PyTorch. What You Will LearnUnderstand what anomaly detection is and why it is important in today's world Become familiar with statistical and traditional machine learning approaches to anomaly detection using Scikit-Learn Know the basics of deep learning in Python using Keras and PyTorch Be aware of basic data science concepts for measuring a model's performance: understand what AUC is, what precision and recall mean, and more Apply deep learning to semi-supervised and unsupervised anomaly detection Who This Book Is For Data scientists and machine learning engineers interested in learning the basics of deep learning applications in anomaly detection


Anomaly Detection

Anomaly Detection

Author: Saira Banu

Publisher: Nova Science Publishers

Published: 2021

Total Pages: 0

ISBN-13: 9781536192643

DOWNLOAD EBOOK

When information in the data warehouse is processed, it follows a definite pattern. An unexpected deviation in the data pattern from the usual behavior is called an anomaly. The anomaly in the data is also referred to as noise, outlier, spammer, deviations, novelties and exceptions. Identification of the rare items, events, observations, patterns which raise suspension by differing significantly from the majority of data is called anomaly detection. With progress in the technologies and the widespread use of data for the purpose for business the increase in the spams faced by the individuals and the companies are increasing day by day. This noisy data has boomed as a major problem in various areas such as Internet of Things, web service, Machine Learning, Artificial Intelligence, Deep learning, Image Processing, Cloud Computing, Audio processing, Video Processing, VoIP, Data Science, Wireless Sensor etc. Identifying the anomaly data and filtering them before processing is a major challenge for the data analyst. This anomaly is unavoidable in all areas of research. This book covers the techniques and algorithms for detecting the deviated data. This book will mainly target researchers and higher graduate learners in computer science and data science.


Network Anomaly Detection

Network Anomaly Detection

Author: Dhruba Kumar Bhattacharyya

Publisher: CRC Press

Published: 2013-06-18

Total Pages: 364

ISBN-13: 146658209X

DOWNLOAD EBOOK

With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavi


Applied Cloud Deep Semantic Recognition

Applied Cloud Deep Semantic Recognition

Author: Mehdi Roopaei

Publisher: CRC Press

Published: 2018-04-09

Total Pages: 188

ISBN-13: 135111901X

DOWNLOAD EBOOK

This book provides a comprehensive overview of the research on anomaly detection with respect to context and situational awareness that aim to get a better understanding of how context information influences anomaly detection. In each chapter, it identifies advanced anomaly detection and key assumptions, which are used by the model to differentiate between normal and anomalous behavior. When applying a given model to a particular application, the assumptions can be used as guidelines to assess the effectiveness of the model in that domain. Each chapter provides an advanced deep content understanding and anomaly detection algorithm, and then shows how the proposed approach is deviating of the basic techniques. Further, for each chapter, it describes the advantages and disadvantages of the algorithm. The final chapters provide a discussion on the computational complexity of the models and graph computational frameworks such as Google Tensorflow and H2O because it is an important issue in real application domains. This book provides a better understanding of the different directions in which research has been done on deep semantic analysis and situational assessment using deep learning for anomalous detection, and how methods developed in one area can be applied in applications in other domains. This book seeks to provide both cyber analytics practitioners and researchers an up-to-date and advanced knowledge in cloud based frameworks for deep semantic analysis and advanced anomaly detection using cognitive and artificial intelligence (AI) models.


Anomaly Detection in Smart Distribution Grids with Deep Neural Network

Anomaly Detection in Smart Distribution Grids with Deep Neural Network

Author: Ming Zhou (Computer scientist)

Publisher:

Published: 2022

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

With the rapid development of smart grids, the detection of anomalies is essential to improve the quality and security protection of the grid. The identification of anomalies not only saves valuable time but also reduces maintenance costs. Due to the increasing deployment of distributed energy resources, traditional methods of protecting the grid that rely on simple linear models and manual inspections are no longer sufficient. Meanwhile, the massive amount of data generated by smart meters and phasor measurement units provide opportunities to better monitor and control power grids in real-time. Due to this advantage of data availability, various machine learning and deep learning methods have been proposed and are currently demonstrating successful results in anomaly detection in power systems. While previously proposed artificial intelligence techniques can successfully de- tect anomalies, most of them tend to require large amounts of simulated data of all different types of anomalies for training their framework. However, anomalous data may be rare in power distribution systems. In addition, their static training model makes them vulnerable to new data from different distributions entering the system. To address these drawbacks, we propose data-driven frameworks based on deep learning network models to directly detect anomalies in power distribution systems. Anomalies are generally defined as observations that deviate from the standard, normal or expected values. Specifically, this work is divided into two phases. In the first phase, we consider anomalies as events caused by changes in the distribution system load, such as customer disconnection from the grid. A long short-term memory network is proposed to predict the next time step of the voltage magnitude of all buses in the distribution system. A threshold function based on Euclidean distance is then used to detect voltage anomalies by utilizing only normal data. The results corresponding to this proposed framework have been successfully tested using a real distribution network. In the second phase, we aim to classify faults and locate faulted lines in partially observable distribution systems using convolutional neural networks. To improve the robustness of the classification and localization performance, we extract feature vectors with measurements in the observable buses as inputs to the proposed classifier. In addition, we incorporate an online continuous learning algorithm to accommodate variations in the level of integration of distributed energy resources and changes in the load of the distribution system over time. Unlike previous data-driven approaches, the proposed method also deals with imbalanced learning tasks, as fault data are often rare. The performance of the method has been tested and validated by simulating ten faults on a real distribution feeder model.


Hands-On Explainable AI (XAI) with Python

Hands-On Explainable AI (XAI) with Python

Author: Denis Rothman

Publisher: Packt Publishing Ltd

Published: 2020-07-31

Total Pages: 455

ISBN-13: 1800202768

DOWNLOAD EBOOK

Resolve the black box models in your AI applications to make them fair, trustworthy, and secure. Familiarize yourself with the basic principles and tools to deploy Explainable AI (XAI) into your apps and reporting interfaces. Key FeaturesLearn explainable AI tools and techniques to process trustworthy AI resultsUnderstand how to detect, handle, and avoid common issues with AI ethics and biasIntegrate fair AI into popular apps and reporting tools to deliver business value using Python and associated toolsBook Description Effectively translating AI insights to business stakeholders requires careful planning, design, and visualization choices. Describing the problem, the model, and the relationships among variables and their findings are often subtle, surprising, and technically complex. Hands-On Explainable AI (XAI) with Python will see you work with specific hands-on machine learning Python projects that are strategically arranged to enhance your grasp on AI results analysis. You will be building models, interpreting results with visualizations, and integrating XAI reporting tools and different applications. You will build XAI solutions in Python, TensorFlow 2, Google Cloud’s XAI platform, Google Colaboratory, and other frameworks to open up the black box of machine learning models. The book will introduce you to several open-source XAI tools for Python that can be used throughout the machine learning project life cycle. You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting the visualization of machine learning models into user explainable interfaces. By the end of this AI book, you will possess an in-depth understanding of the core concepts of XAI. What you will learnPlan for XAI through the different stages of the machine learning life cycleEstimate the strengths and weaknesses of popular open-source XAI applicationsExamine how to detect and handle bias issues in machine learning dataReview ethics considerations and tools to address common problems in machine learning dataShare XAI design and visualization best practicesIntegrate explainable AI results using Python modelsUse XAI toolkits for Python in machine learning life cycles to solve business problemsWho this book is for This book is not an introduction to Python programming or machine learning concepts. You must have some foundational knowledge and/or experience with machine learning libraries such as scikit-learn to make the most out of this book. Some of the potential readers of this book include: Professionals who already use Python for as data science, machine learning, research, and analysisData analysts and data scientists who want an introduction into explainable AI tools and techniquesAI Project managers who must face the contractual and legal obligations of AI Explainability for the acceptance phase of their applications


Machine Learning in Intrusion Detection

Machine Learning in Intrusion Detection

Author: Yihua Liao

Publisher:

Published: 2005

Total Pages: 230

ISBN-13:

DOWNLOAD EBOOK

Detection of anomalies in data is one of the fundamental machine learning tasks. Anomaly detection provides the core technology for a broad spectrum of security-centric applications. In this dissertation, we examine various aspects of anomaly based intrusion detection in computer security. First, we present a new approach to learn program behavior for intrusion detection. Text categorization techniques are adopted to convert each process to a vector and calculate the similarity between two program activities. Then the k-nearest neighbor classifier is employed to classify program behavior as normal or intrusive. We demonstrate that our approach is able to effectively detect intrusive program behavior while a low false positive rate is achieved. Second, we describe an adaptive anomaly detection framework that is de- signed to handle concept drift and online learning for dynamic, changing environments. Through the use of unsupervised evolving connectionist systems, normal behavior changes are efficiently accommodated while anomalous activities can still be recognized. We demonstrate the performance of our adaptive anomaly detection systems and show that the false positive rate can be significantly reduced.