Quantum Computing For The Brain

Quantum Computing For The Brain

Author: Melanie Swan

Publisher: World Scientific

Published: 2022-05-30

Total Pages: 551

ISBN-13: 1800610637

DOWNLOAD EBOOK

Quantum Computing for the Brain argues that the brain is the killer application for quantum computing. No other system is as complex, as multidimensional in time and space, as dynamic, as less well-understood, as of peak interest, and as in need of three-dimensional modeling as it functions in real-life, as the brain.Quantum computing has emerged as a platform suited to contemporary data processing needs, surpassing classical computing and supercomputing. This book shows how quantum computing's increased capacity to model classical data with quantum states and the ability to run more complex permutations of problems can be employed in neuroscience applications such as neural signaling and synaptic integration. State-of-the-art methods are discussed such as quantum machine learning, tensor networks, Born machines, quantum kernel learning, wavelet transforms, Rydberg atom arrays, ion traps, boson sampling, graph-theoretic models, quantum optical machine learning, neuromorphic architectures, spiking neural networks, quantum teleportation, and quantum walks.Quantum Computing for the Brain is a comprehensive one-stop resource for an improved understanding of the converging research frontiers of foundational physics, information theory, and neuroscience in the context of quantum computing.


Neuromorphic Computing and Beyond

Neuromorphic Computing and Beyond

Author: Khaled Salah Mohamed

Publisher:

Published: 2020

Total Pages: 233

ISBN-13: 9783030372255

DOWNLOAD EBOOK

This book discusses and compares several new trends that can be used to overcome Moore's law limitations, including Neuromorphic, Approximate, Parallel, In Memory, and Quantum Computing. The author shows how these paradigms are used to enhance computing capability as developers face the practical and physical limitations of scaling, while the demand for computing power keeps increasing. The discussion includes a state-of-the-art overview and the essential details of each of these paradigms. Introduces in one volume all the trends that can be used to overcome Moore's law limitations; Describes in detail Neuromorphic, Approximate, Parallel, In Memory, and Quantum Computing concepts, in a manner accessible to a wide variety of readers; Compares tradeoffs between the various paradigms discussed.


Quantum Machine Learning

Quantum Machine Learning

Author: Claudio Conti

Publisher: Springer Nature

Published: 2024-01-28

Total Pages: 393

ISBN-13: 3031442261

DOWNLOAD EBOOK

This book presents a new way of thinking about quantum mechanics and machine learning by merging the two. Quantum mechanics and machine learning may seem theoretically disparate, but their link becomes clear through the density matrix operator which can be readily approximated by neural network models, permitting a formulation of quantum physics in which physical observables can be computed via neural networks. As well as demonstrating the natural affinity of quantum physics and machine learning, this viewpoint opens rich possibilities in terms of computation, efficient hardware, and scalability. One can also obtain trainable models to optimize applications and fine-tune theories, such as approximation of the ground state in many body systems, and boosting quantum circuits’ performance. The book begins with the introduction of programming tools and basic concepts of machine learning, with necessary background material from quantum mechanics and quantum information also provided. This enables the basic building blocks, neural network models for vacuum states, to be introduced. The highlights that follow include: non-classical state representations, with squeezers and beam splitters used to implement the primary layers for quantum computing; boson sampling with neural network models; an overview of available quantum computing platforms, their models, and their programming; and neural network models as a variational ansatz for many-body Hamiltonian ground states with applications to Ising machines and solitons. The book emphasizes coding, with many open source examples in Python and TensorFlow, while MATLAB and Mathematica routines clarify and validate proofs. This book is essential reading for graduate students and researchers who want to develop both the requisite physics and coding knowledge to understand the rich interplay of quantum mechanics and machine learning.


Neuromorphic Computing

Neuromorphic Computing

Author:

Publisher: BoD – Books on Demand

Published: 2023-11-15

Total Pages: 298

ISBN-13: 1803561432

DOWNLOAD EBOOK

Dive into the cutting-edge world of Neuromorphic Computing, a groundbreaking volume that unravels the secrets of brain-inspired computational paradigms. Spanning neuroscience, artificial intelligence, and hardware design, this book presents a comprehensive exploration of neuromorphic systems, empowering both experts and newcomers to embrace the limitless potential of brain-inspired computing. Discover the fundamental principles that underpin neural computation as we journey through the origins of neuromorphic architectures, meticulously crafted to mimic the brain’s intricate neural networks. Unlock the true essence of learning mechanisms – unsupervised, supervised, and reinforcement learning – and witness how these innovations are shaping the future of artificial intelligence.


Quantum Neural Computation

Quantum Neural Computation

Author: Vladimir G. Ivancevic

Publisher: Springer Science & Business Media

Published: 2010-01-18

Total Pages: 938

ISBN-13: 9048133505

DOWNLOAD EBOOK

Quantum Neural Computation is a graduate–level monographic textbook. It presents a comprehensive introduction, both non-technical and technical, into modern quantum neural computation, the science behind the fiction movie Stealth. Classical computing systems perform classical computations (i.e., Boolean operations, such as AND, OR, NOT gates) using devices that can be described classically (e.g., MOSFETs). On the other hand, quantum computing systems perform classical computations using quantum devices (quantum dots), that is devices that can be described only using quantum mechanics. Any information transfer between such computing systems involves a state measurement. This book describes this information transfer at the edge of classical and quantum chaos and turbulence, where mysterious quantum-mechanical linearity meets even more mysterious brain’s nonlinear complexity, in order to perform a super–high–speed and error–free computations. This monograph describes a crossroad between quantum field theory, brain science and computational intelligence.


Quantum Machine Learning

Quantum Machine Learning

Author: Pethuru Raj

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2024-08-05

Total Pages: 336

ISBN-13: 3111342271

DOWNLOAD EBOOK

Quantum computing has shown a potential to tackle specific types of problems, especially those involving a daunting number of variables, at an exponentially faster rate compared to classical computers. This volume focuses on quantum variants of machine learning algorithms, such as quantum neural networks, quantum reinforcement learning, quantum principal component analysis, quantum support vectors, quantum Boltzmann machines, and many more.


Understanding and Bridging the Gap between Neuromorphic Computing and Machine Learning, volume II

Understanding and Bridging the Gap between Neuromorphic Computing and Machine Learning, volume II

Author: Huajin Tang

Publisher: Frontiers Media SA

Published: 2024-08-26

Total Pages: 152

ISBN-13: 283255363X

DOWNLOAD EBOOK

Towards the long-standing dream of artificial intelligence, two solution paths have been paved: (i) neuroscience-driven neuromorphic computing; (ii) computer science-driven machine learning. The former targets at harnessing neuroscience to obtain insights for brain-like processing, by studying the detailed implementation of neural dynamics, circuits, coding and learning. Although our understanding of how the brain works is still very limited, this bio-plausible way offers an appealing promise for future general intelligence. In contrast, the latter aims at solving practical tasks typically formulated as a cost function with high accuracy, by eschewing most neuroscience details in favor of brute force optimization and feeding a large volume of data. With the help of big data (e.g. ImageNet), high-performance processors (e.g. GPU, TPU), effective training algorithms (e.g. artificial neural networks with gradient descent training), and easy-to-use design tools (e.g. Pytorch, Tensorflow), machine learning has achieved superior performance in a broad spectrum of scenarios. Although acclaimed for the biological plausibility and the low power advantage (benefit from the spike signals and event-driven processing), there are ongoing debates and skepticisms about neuromorphic computing since it usually performs worse than machine learning in practical tasks especially in terms of the accuracy.


Machine Learning Meets Quantum Physics

Machine Learning Meets Quantum Physics

Author: Kristof T. Schütt

Publisher: Springer Nature

Published: 2020-06-03

Total Pages: 473

ISBN-13: 3030402452

DOWNLOAD EBOOK

Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.


Supervised Learning with Quantum Computers

Supervised Learning with Quantum Computers

Author: Maria Schuld

Publisher: Springer

Published: 2018-08-30

Total Pages: 293

ISBN-13: 3319964240

DOWNLOAD EBOOK

Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.