Deep In-memory Architectures for Machine Learning

Deep In-memory Architectures for Machine Learning

Author: Mingu Kang

Publisher: Springer Nature

Published: 2020-01-30

Total Pages: 181

ISBN-13: 3030359719

DOWNLOAD EBOOK

This book describes the recent innovation of deep in-memory architectures for realizing AI systems that operate at the edge of energy-latency-accuracy trade-offs. From first principles to lab prototypes, this book provides a comprehensive view of this emerging topic for both the practicing engineer in industry and the researcher in academia. The book is a journey into the exciting world of AI systems in hardware.


Learning Deep Architectures for AI

Learning Deep Architectures for AI

Author: Yoshua Bengio

Publisher: Now Publishers Inc

Published: 2009

Total Pages: 145

ISBN-13: 1601982941

DOWNLOAD EBOOK

Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.


Deep Learning Architectures

Deep Learning Architectures

Author: Ovidiu Calin

Publisher: Springer Nature

Published: 2020-02-13

Total Pages: 760

ISBN-13: 3030367215

DOWNLOAD EBOOK

This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter. This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.


Deep Learning for Computer Architects

Deep Learning for Computer Architects

Author: Brandon Reagen

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 109

ISBN-13: 3031017560

DOWNLOAD EBOOK

Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.


Efficient Processing of Deep Neural Networks

Efficient Processing of Deep Neural Networks

Author: Vivienne Sze

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 254

ISBN-13: 3031017668

DOWNLOAD EBOOK

This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.


Deep Learning and Parallel Computing Environment for Bioengineering Systems

Deep Learning and Parallel Computing Environment for Bioengineering Systems

Author: Arun Kumar Sangaiah

Publisher: Academic Press

Published: 2019-07-26

Total Pages: 282

ISBN-13: 0128172932

DOWNLOAD EBOOK

Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data


Deep Learning

Deep Learning

Author: Ian Goodfellow

Publisher: MIT Press

Published: 2016-11-10

Total Pages: 801

ISBN-13: 0262337371

DOWNLOAD EBOOK

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.


The Principles of Deep Learning Theory

The Principles of Deep Learning Theory

Author: Daniel A. Roberts

Publisher: Cambridge University Press

Published: 2022-05-26

Total Pages: 473

ISBN-13: 1316519333

DOWNLOAD EBOOK

This volume develops an effective theory approach to understanding deep neural networks of practical relevance.


Hardware Architectures for Deep Learning

Hardware Architectures for Deep Learning

Author: Masoud Daneshtalab

Publisher: Institution of Engineering and Technology

Published: 2020-04-24

Total Pages: 329

ISBN-13: 1785617680

DOWNLOAD EBOOK

This book presents and discusses innovative ideas in the design, modelling, implementation, and optimization of hardware platforms for neural networks. The rapid growth of server, desktop, and embedded applications based on deep learning has brought about a renaissance in interest in neural networks, with applications including image and speech processing, data analytics, robotics, healthcare monitoring, and IoT solutions. Efficient implementation of neural networks to support complex deep learning-based applications is a complex challenge for embedded and mobile computing platforms with limited computational/storage resources and a tight power budget. Even for cloud-scale systems it is critical to select the right hardware configuration based on the neural network complexity and system constraints in order to increase power- and performance-efficiency. Hardware Architectures for Deep Learning provides an overview of this new field, from principles to applications, for researchers, postgraduate students and engineers who work on learning-based services and hardware platforms.


Deep Learning

Deep Learning

Author: Josh Patterson

Publisher: "O'Reilly Media, Inc."

Published: 2017-07-28

Total Pages: 550

ISBN-13: 1491914211

DOWNLOAD EBOOK

Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learning—especially deep neural networks—make a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks. Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you’ll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J. Dive into machine learning concepts in general, as well as deep learning in particular Understand how deep networks evolved from neural network fundamentals Explore the major deep network architectures, including Convolutional and Recurrent Learn how to map specific deep networks to the right problem Walk through the fundamentals of tuning general neural networks and specific deep network architectures Use vectorization techniques for different data types with DataVec, DL4J’s workflow tool Learn how to use DL4J natively on Spark and Hadoop