Decorated Teichmüller Theory

Decorated Teichmüller Theory

Author: R. C. Penner

Publisher: European Mathematical Society

Published: 2012

Total Pages: 388

ISBN-13: 9783037190753

DOWNLOAD EBOOK

There is an essentially ``tinker-toy'' model of a trivial bundle over the classical Teichmuller space of a punctured surface, called the decorated Teichmuller space, where the fiber over a point is the space of all tuples of horocycles, one about each puncture. This model leads to an extension of the classical mapping class groups called the Ptolemy groupoids and to certain matrix models solving related enumerative problems, each of which has proved useful both in mathematics and in theoretical physics. These spaces enjoy several related parametrizations leading to a rich and intricate algebro-geometric structure tied to the already elaborate combinatorial structure of the tinker-toy model. Indeed, the natural coordinates give the prototypical examples not only of cluster algebras but also of tropicalization. This interplay of combinatorics and coordinates admits further manifestations, for example, in a Lie theory for homeomorphisms of the circle, in the geometry underlying the Gauss product, in profinite and pronilpotent geometry, in the combinatorics underlying conformal and topological quantum field theories, and in the geometry and combinatorics of macromolecules. This volume gives the story a wider context of these decorated Teichmuller spaces as developed by the author over the last two decades in a series of papers, some of them in collaboration. Sometimes correcting errors or typos, sometimes simplifying proofs, and sometimes articulating more general formulations than the original research papers, this volume is self contained and requires little formal background. Based on a master's course at Aarhus University, it gives the first treatment of these works in monographic form.


Handbook of Teichmüller Theory

Handbook of Teichmüller Theory

Author: Athanase Papadopoulos

Publisher: European Mathematical Society

Published: 2007

Total Pages: 888

ISBN-13: 9783037190555

DOWNLOAD EBOOK

This multi-volume set deals with Teichmuller theory in the broadest sense, namely, as the study of moduli space of geometric structures on surfaces, with methods inspired or adapted from those of classical Teichmuller theory. The aim is to give a complete panorama of this generalized Teichmuller theory and of its applications in various fields of mathematics. The volumes consist of chapters, each of which is dedicated to a specific topic. The volume has 19 chapters and is divided into four parts: The metric and the analytic theory (uniformization, Weil-Petersson geometry, holomorphic families of Riemann surfaces, infinite-dimensional Teichmuller spaces, cohomology of moduli space, and the intersection theory of moduli space). The group theory (quasi-homomorphisms of mapping class groups, measurable rigidity of mapping class groups, applications to Lefschetz fibrations, affine groups of flat surfaces, braid groups, and Artin groups). Representation spaces and geometric structures (trace coordinates, invariant theory, complex projective structures, circle packings, and moduli spaces of Lorentz manifolds homeomorphic to the product of a surface with the real line). The Grothendieck-Teichmuller theory (dessins d'enfants, Grothendieck's reconstruction principle, and the Teichmuller theory of the solenoid). This handbook is an essential reference for graduate students and researchers interested in Teichmuller theory and its ramifications, in particular for mathematicians working in topology, geometry, algebraic geometry, dynamical systems and complex analysis. The authors are leading experts in the field.


Decorated Teichmüller Theory

Decorated Teichmüller Theory

Author: R. C. Penner

Publisher:

Published: 2012

Total Pages: 360

ISBN-13: 9783037195758

DOWNLOAD EBOOK

There is an essentially "tinker-toy" model of a trivial bundle over the classical Teichmüller space of a punctured surface, called the decorated Teichmüller space, where the fiber over a point is the space of all tuples of horocycles, one about each puncture. This model leads to an extension of the classical mapping class groups called the Ptolemy groupoids and to certain matrix models solving related enumerative problems, each of which has proved useful both in mathematics and in theoretical physics. These spaces enjoy several related parametrizations leading to a rich and intricate algebro-geometric structure tied to the already elaborate combinatorial structure of the tinker-toy model. Indeed, the natural coordinates give the prototypical examples not only of cluster algebras but also of tropicalization. This interplay of combinatorics and coordinates admits further manifestations, for example, in a Lie theory for homeomorphisms of the circle, in the geometry underlying the Gauss product, in profinite and pronilpotent geometry, in the combinatorics underlying conformal and topological quantum field theories, and in the geometry and combinatorics of macromolecules. This volume gives the story and wider context of these decorated Teichmüller spaces as developed by the author over the last two decades in a series of papers, some of them in collaboration. Sometimes correcting errors or typos, sometimes simplifying proofs and sometimes articulating more general formulations than the original research papers, this volume is self-contained and requires little formal background. Based on a master's course at Aarhus University, it gives the first treatment of these works in monographic form.


Chern-Simons Gauge Theory: 20 Years After

Chern-Simons Gauge Theory: 20 Years After

Author: Jørgen E. Andersen

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 464

ISBN-13: 0821853538

DOWNLOAD EBOOK

In 1989, Edward Witten discovered a deep relationship between quantum field theory and knot theory, and this beautiful discovery created a new field of research called Chern-Simons theory. This field has the remarkable feature of intertwining a large number of diverse branches of research in mathematics and physics, among them low-dimensional topology, differential geometry, quantum algebra, functional and stochastic analysis, quantum gravity, and string theory. The 20-year anniversary of Witten's discovery provided an opportunity to bring together researchers working in Chern-Simons theory for a meeting, and the resulting conference, which took place during the summer of 2009 at the Max Planck Institute for Mathematics in Bonn, included many of the leading experts in the field. This volume documents the activities of the conference and presents several original research articles, including another monumental paper by Witten that is sure to stimulate further activity in this and related fields. This collection will provide an excellent overview of the current research directions and recent progress in Chern-Simons gauge theory.


Problems on Mapping Class Groups and Related Topics

Problems on Mapping Class Groups and Related Topics

Author: Benson Farb

Publisher: American Mathematical Soc.

Published: 2006-09-12

Total Pages: 384

ISBN-13: 0821838385

DOWNLOAD EBOOK

The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.


Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)

Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)

Author: Boyan Sirakov

Publisher: World Scientific

Published: 2019-02-27

Total Pages: 5393

ISBN-13: 9813272899

DOWNLOAD EBOOK

The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.


Geometric Galois Actions: Volume 2, The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups

Geometric Galois Actions: Volume 2, The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups

Author: Leila Schneps

Publisher: Cambridge University Press

Published: 1997-08-07

Total Pages: 363

ISBN-13: 0521596416

DOWNLOAD EBOOK

This book surveys progress in the domains described in the hitherto unpublished manuscript "Esquisse d'un Programme" (Sketch of a Program) by Alexander Grothendieck. It will be of wide interest amongst workers in algebraic geometry, number theory, algebra and topology.


Woods Hole Mathematics

Woods Hole Mathematics

Author: Nils Tongring

Publisher: World Scientific

Published: 2005

Total Pages: 360

ISBN-13: 9812701397

DOWNLOAD EBOOK

The central theme of this volume is the contemporary mathematics of geometry and physics, but the work also discusses the problem of the secondary structure of proteins, and an overview of arc complexes with proposed applications to macromolecular folding is given. OC Woods Hole has played such a vital role in both my mathematical and personal life that it is a great pleasure to see the mathematical tradition of the 1964 meeting resurrected forty years later and, as this volume shows, resurrected with new vigor and hopefully on a regular basis. I therefore consider it a signal honor to have been asked to introduce this volume with a few reminiscences of that meeting forty years ago.OCO Introduction by R Bott (Wolf Prize Winner, 2000)."


Quantum Triangulations

Quantum Triangulations

Author: Mauro Carfora

Publisher: Springer

Published: 2017-11-27

Total Pages: 403

ISBN-13: 3319679376

DOWNLOAD EBOOK

This book discusses key conceptual aspects and explores the connection between triangulated manifolds and quantum physics, using a set of case studies ranging from moduli space theory to quantum computing to provide an accessible introduction to this topic. Research on polyhedral manifolds often reveals unexpected connections between very distinct aspects of mathematics and physics. In particular, triangulated manifolds play an important role in settings such as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, critical phenomena and complex systems. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is also often a consequence of an underlying structure that naturally calls into play non-trivial aspects of representation theory, complex analysis and topology in a way that makes the basic geometric structures of the physical interactions involved clear. This second edition further emphasizes the essential role that triangulations play in modern mathematical physics, with a new and highly detailed chapter on the geometry of the dilatonic non-linear sigma model and its subtle and many-faceted connection with Ricci flow theory. This connection is treated in depth, pinpointing both the mathematical and physical aspects of the perturbative embedding of the Ricci flow in the renormalization group flow of non-linear sigma models. The geometry of the dilaton field is discussed from a novel standpoint by using polyhedral manifolds and Riemannian metric measure spaces, emphasizing their role in connecting non-linear sigma models’ effective action to Perelman’s energy-functional. No other published account of this matter is so detailed and informative. This new edition also features an expanded appendix on Riemannian geometry, and a rich set of new illustrations to help the reader grasp the more difficult points of the theory. The book offers a valuable guide for all mathematicians and theoretical physicists working in the field of quantum geometry and its applications.