At a time when many older facilities are being decommissioned and many more are undergoing major retrofits to extend their lives, there is a wealth of information emerging to guide the design of new facilities. In this publication, the most important lessons learned in recent years are examined.
During the last century, nuclear power has been established as a reliable source of energy in the major industrialised countries. It has recently enjoyed a revival in attention and research due to the environmental concerns surrounding current conventional energy sources. Issues of regulation and safety are at the forefront of all discussions involving nuclear power, and will govern its place in the future. The Future of Nuclear Power takes a technical and comprehensive look at the current and future status of nuclear power throughout the world. The 17 chapters are divided into two main sections: a review of all current generation plants, and concepts for new advanced reactor design and safety. The broad-ranging topics covered by this publication, coupled with the current revival of interest in nuclear energy, make it a timely reference for all nuclear scientists. - Reviews the issues surrounding the future operation of existing commercial nuclear plants - Several chapters dedicated to the extensive research programs in place concerning safe and reliable operation - Compares nuclear and non-nuclear options for energy needs in the future; evaluating the benefits and risks of both
Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning.
Describes the rationale and vision for the peaceful use of nuclear energy. The publication identifies the basic principles that nuclear energy systems must satisfy to fulfil their promise of meeting growing global energy demands.
The main aim of this publication is to disseminate experience in and guidance on cost estimates for research reactor decommissioning projects. It presents the principles and background for a costing methodology based on the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations. The methodology presented implements actual experience in decommissioning costing and is in line with IAEA efforts promoting harmonization in this field. The IAEA has contributed to the development of software called CERREX (Cost Estimate for Research Reactors in Excel), a simpler version suitable for preliminary costing stages, which is included on the attached CD-ROM, together with a user manual. Several practical examples of software implementation and clarification of some details of available methodologies and models are also provided.
While refurbishments for the long-term operation of nuclear power plants and for the lifetime extension of such plants have been widely pursued in recent years, the number of plants to be decommissioned is nonetheless expected to increase in future, particularly in the United States and Europe. It is thus important to understand the costs of decommissioning so as to develop coherent and cost-effective strategies, realistic cost estimates based on decommissioning plans from the outset of operations and mechanisms to ensure that future decommissioning expenses can be adequately covered. This study presents the results of an NEA review of the costs of decommissioning nuclear power plants and of overall funding practices adopted across NEA member countries. The study is based on the results of this NEA questionnaire, on actual decommissioning costs or estimates, and on plans for the establishment and management of decommissioning funds. Case studies are included to provide insight into decommissioning practices in a number of countries.
This safety report publication provides specific guidance on the management of project risks in decommissioning. The publication proposes a systematic and pro-active approach on how to identify, analyse, evaluate, and treat relevant project risks at strategic and operational levels, and provides examples of application of the proposed approach
On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.
As part of the Action Plan on Nuclear Safety, the IAEA led the International Project on Managing the Decommissioning and Remediation of Damaged Nuclear Facilities (DAROD Project). The DAROD Project focuses on providing practical guidance for the decommissioning and remediation of accident damaged nuclear facilities based on case studies of actual damaged facilities and lessons learned. This publication summarizes the outcomes of the DAROD Project. It is intended for regulatory bodies, operating organizations, technical support organizations and governmental officials who are involved in the decommissioning and remediation of nuclear facilities damaged after an accident or owing to a legacy deterioration.
In recent years, several Member States have completed the decommissioning of multifacility nuclear sites. This publication consolidates their technical and organizational experience, and provides information and practical guidance that promotes safe, timely and cost effective implementation. All phases of decommissioning are discussed, from planning and dismantling to waste management and site release, as well as organizational schemes and funding. This publication is intended for decision makers, plant operators, contractors and regulators involved in planning, management, authorization and execution of decommissioning activities. It is particularly relevant for multifacility site operators with nuclear facilities approaching the end of their foreseen lifetime. The publication will also be of interest for the designers and builders of new nuclear installations in order to facilitate eventual decommissioning.